Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resis...Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resistivity (p) is the minimum (0.38 Ω cm) for 20 at.% of AI doping. The possible mechanism behind the phenomenal zig-zag variation in resistivity with respect to AI doping is discussed in detail. The nature of conductivity changes from n-type to p-type when the AI doping level is 10 at.%. The results show that 20 at.% is the optimum doping level for good quality p-type SnO2:AI films suitable for transparent electronic devices.展开更多
Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like str...Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.展开更多
The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant ...The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant monoethanolamine and the non-ionic surfactant polyethylene glycol(PEG) were added to the ITO precursor slurry.The influences of surfactants on the structural and photoelectric properties of ITO film samples were investigated.XRD patterns indicated that surfactant monoethanolamine contributed to film predominant grain orientation along the(400) plane.The high transmittance(over 95%) was attributed to the preferred orientation and the grain size expansion of ITO films.SEM showed that the surface particle size and the morphology of ITO films were strongly dependent on the kind of surfactants used.Moving to the shortwave region, the absorption edge of the films exhibited the Burstein-Moss shift.展开更多
为了解决传统除雾方法在抗击新冠肺炎疫情的过程中所出现的除雾时效短且效果不稳定等问题,该文提出一种基于氧化铟锡(Indium tin oxide,ITO)薄膜的医用护目镜加温除雾技术。该技术提出了加温除雾装置系统方案,并利用ANSYS软件模拟该除...为了解决传统除雾方法在抗击新冠肺炎疫情的过程中所出现的除雾时效短且效果不稳定等问题,该文提出一种基于氧化铟锡(Indium tin oxide,ITO)薄膜的医用护目镜加温除雾技术。该技术提出了加温除雾装置系统方案,并利用ANSYS软件模拟该除雾技术的使用环境并分析对应的温度场,获得了针对不同室温所需的除雾参数,同时以仿真结果为参考,进行了除雾效果验证试验,得到了不同环境温度下的最佳除雾温度。试验结果表明,该文提出的护目镜ITO薄膜加温除雾技术能有效延长除雾时间,且能保持除雾效果的稳定性。展开更多
Tin oxide(SnO2) and fluorine doped tin oxide(FTO) films were prepared on glass substrates by sol-gel spin-coating using SnCl4 and NH4F precursors.Fluorine doping concentration was fixed at 4 at%and 20 at%by contro...Tin oxide(SnO2) and fluorine doped tin oxide(FTO) films were prepared on glass substrates by sol-gel spin-coating using SnCl4 and NH4F precursors.Fluorine doping concentration was fixed at 4 at%and 20 at%by controlling precursor sol composition.Films exhibited the tetragonal rutile-type crystal structure regardless of fluorine concentration.Uniform and highly transparent FTO films,with more than 85%of optical transmittance,were obtained by annealing at 600℃.Florine doping of films was verified by analyzing the valence band region obtained by XPS.It was found that the fluorine doping affects the shape of valence band of SnO2 films.In addition,it was observed that the band gap of SnO2 is reduced as well as the Fermi level is upward shifted by the effect of fluorine doping.展开更多
基金Financial support from the University Grants Commission ofIndia through the Major Research Project(F.No.40-28/2011(SR))the DST Grant(D.O.No.SR/S2/CMP-35/2004)
文摘Aluminium doped tin oxide films have been deposited onto glass substrates by using a simplified and low cost spray pyrolysis technique. The AI doping level varies between 0 and 30 at.% in the step of 5 at.%. The resistivity (p) is the minimum (0.38 Ω cm) for 20 at.% of AI doping. The possible mechanism behind the phenomenal zig-zag variation in resistivity with respect to AI doping is discussed in detail. The nature of conductivity changes from n-type to p-type when the AI doping level is 10 at.%. The results show that 20 at.% is the optimum doping level for good quality p-type SnO2:AI films suitable for transparent electronic devices.
基金Supported by the Research Fund of the International Science & Technology Cooperation Program of China(No.2011DFA52650) and Project 111(B13035)
文摘Sb-doped Sn O2(ATO) thin films have been prepared using the spin coating method by selecting the proper amount of acetylacetone as solution modifier. All ATO powders and films exhibited the cassiterite rutile-like structure in a crystal size below 10 nm under all the experimental conditions and a nonpreviously reported crystal structure was observed at high acetylacetone loads. The acetylacetone molar ratio influenced notably the optical and electrical properties of ATO films. When prepared at an acetylacetone molar ratio of 4, ATO films exhibited optical transparencies above 90% in the visible region and above 40% in the UV region for thicknesses of 100 and 300 nm. Films in a thickness of 100 nm and at an annealing temperature of 650 ℃ accounted for a high transparency of 97% in the visible wavelength. Films prepared at an acetylacetone molar ratio of 4 exhibited an electric resistivity of 1.33×10-3 Ω·cm at an annealing temperature of 650 ℃. The optimal Sb content for ATO films was found to be 8 at%. The relationships among the properties of starting solutions, the experimental parameters, and properties of ATO films are discussed.
基金supported by the National High-Tech Research and Development Program of China (No. 2004AA303542)
文摘The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant monoethanolamine and the non-ionic surfactant polyethylene glycol(PEG) were added to the ITO precursor slurry.The influences of surfactants on the structural and photoelectric properties of ITO film samples were investigated.XRD patterns indicated that surfactant monoethanolamine contributed to film predominant grain orientation along the(400) plane.The high transmittance(over 95%) was attributed to the preferred orientation and the grain size expansion of ITO films.SEM showed that the surface particle size and the morphology of ITO films were strongly dependent on the kind of surfactants used.Moving to the shortwave region, the absorption edge of the films exhibited the Burstein-Moss shift.
文摘为了解决传统除雾方法在抗击新冠肺炎疫情的过程中所出现的除雾时效短且效果不稳定等问题,该文提出一种基于氧化铟锡(Indium tin oxide,ITO)薄膜的医用护目镜加温除雾技术。该技术提出了加温除雾装置系统方案,并利用ANSYS软件模拟该除雾技术的使用环境并分析对应的温度场,获得了针对不同室温所需的除雾参数,同时以仿真结果为参考,进行了除雾效果验证试验,得到了不同环境温度下的最佳除雾温度。试验结果表明,该文提出的护目镜ITO薄膜加温除雾技术能有效延长除雾时间,且能保持除雾效果的稳定性。
文摘Tin oxide(SnO2) and fluorine doped tin oxide(FTO) films were prepared on glass substrates by sol-gel spin-coating using SnCl4 and NH4F precursors.Fluorine doping concentration was fixed at 4 at%and 20 at%by controlling precursor sol composition.Films exhibited the tetragonal rutile-type crystal structure regardless of fluorine concentration.Uniform and highly transparent FTO films,with more than 85%of optical transmittance,were obtained by annealing at 600℃.Florine doping of films was verified by analyzing the valence band region obtained by XPS.It was found that the fluorine doping affects the shape of valence band of SnO2 films.In addition,it was observed that the band gap of SnO2 is reduced as well as the Fermi level is upward shifted by the effect of fluorine doping.