Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the t...Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the time-of-flight technique. Accuracy of the nuclear data for tungsten was examined by comparing the measured neutron spectra with the leakage neutron spectra simulated using the MCNP-4C code with evaluated nuclear data of the JEFF-3.2, FENDL-3.0 and TENDL-2014 libraries. The results show that the calculations with JEFF-3.2 agree well with the measurements in the whole energy range and all angles, whereas the spectra calculated with FENDL-3.0 and TENDL-2014 have some discrepancies with the experimental data.展开更多
The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture ...The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.展开更多
The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT ...The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.展开更多
The coincidence experimental setup for studying multiple electron processes at low energies established at the Institute of Modern Physics was presented. The setup includes time-of-flight spectrometer, position sensit...The coincidence experimental setup for studying multiple electron processes at low energies established at the Institute of Modern Physics was presented. The setup includes time-of-flight spectrometer, position sensitive detector, and multi-parameter data acquisition system. Presented were a TOF spectrum for Ar 12+ on Ar collisions, a position spectrum obtained in O 2++He collisions, and a two-dimension spectrum for Ar 8++Ar collisions at 104 keV. The experimental results were analyzed in detail and 12 subprocesses were identified from the two-dimension spectrum.展开更多
基金supported by the National Natural Science Foundation of China(No.11605097,91426301,and 11605257)Doctoral Scientific Research Foundation of Inner Mongolia University for the Nationalities(No.BS365)the‘‘ADS project 302’’of the Chinese Academy of Sciences(No.XDA03030200)
文摘Integral experiments on tungsten slab samples were carried out on the D-T neutron source facility at China Institute of Atomic Energy. Leakage neutron spectra from the irradiated tungsten target were measured by the time-of-flight technique. Accuracy of the nuclear data for tungsten was examined by comparing the measured neutron spectra with the leakage neutron spectra simulated using the MCNP-4C code with evaluated nuclear data of the JEFF-3.2, FENDL-3.0 and TENDL-2014 libraries. The results show that the calculations with JEFF-3.2 agree well with the measurements in the whole energy range and all angles, whereas the spectra calculated with FENDL-3.0 and TENDL-2014 have some discrepancies with the experimental data.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1832182,11875328,11761161001,and U2032137)the Natural Science Foundation of Guangdong Province,China(Nos.18zxxt65 and 2022A1515011184)+3 种基金the Science and Technology Development Fund,Macao SAR(Grant No.008/2017/AFJ)the Macao Young Scholars Program of China(No.AM201907)the China Postdoctoral Science Foundation(Nos.2016LH0045 and 2017M621573)the Fundamental Research Funds for the Central Universities(Nos.22qntd3101 and 2021qntd28).
文摘The neutron capture cross sections(n,γ)of bromine were obtained using the time-of-flight technique at the Back-n facility of the China Spallation Neutron Source.Promptγ-rays originating from neutron-induced capture events were detected using four C_(6)D_(6) detectors.The pulse-height weighting technique and double-bunch unfolding method based on Bayesian theory were used in the data analysis.Background deductions,normalization,and corrections were carefully considered to obtain reliable measurement results.The multilevel R-matrix Bayesian code SAMMY was used to extract the resonance parameters in the resolved resonance region(RRR).The average cross sections in the unresolved resonance region(URR)were obtained from 10 to 400 keV.The experimental results were compared with data from several evaluated libraries and previous experi-ments in the RRR and URR.The TALYS code was used to describe the average cross sections in the URR.The astrophysical Maxwell average cross sections(MACSs)of ^(79,81)Br from kT=5 to 100 keV were calculated over a sufficiently wide range of neutron energies.At a thermal energy of kT=30 keV,the MACS value for ^(79)Br 682±68 mb was in good agreement with the KADoNiS v1.0 recommended value.By contrast,the value of 293±29 mb for ^(81)Br was substantially higher than that of the evaluated database and the KADoNiS v1.0 recommended value.
基金National Key Research and Development Program of China(Grant No.2019YFA0709003)National Natural Science Foundation of China(Grant No.51905079)Liaoning Revitalization Talents Program(Grant No.XLYC1902082).
文摘The shallow subsurface defects are difficult to be identified and quantified by ultrasonic time-of-flight diffraction(TOFD)due to the low resolution induced by pulse width and beam spreading.In this paper,Sparse-SAFT is proposed to improve the time resolution and lateral resolution in TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique(SAFT).The mathematical model in the frequency domain is established based on the l1 and l2 norm constraints,and the optimization problem is solved for enhancing time resolution.On this basis,SAFT is employed to improve lateral resolution by delay-and-sum beamforming.The simulated and experimental results indicate that the lateral wave and tip-diffracted waves can be decoupled with Sparse-SAFT.The shallow subsurface defects with a height of 3.0 mm at the depth of 3.0 mm were detected quantitatively,and the relative measurement errors of flaw heights and depths were no more than 10.3%.Compared to conventional SAFT,the time resolution and lateral resolution are enhanced by 72.5 and 56%with Sparse-SAFT,respectively.Finally,the proposed method is also suitable for improving resolution to detect the defects beyond dead zone.
文摘The coincidence experimental setup for studying multiple electron processes at low energies established at the Institute of Modern Physics was presented. The setup includes time-of-flight spectrometer, position sensitive detector, and multi-parameter data acquisition system. Presented were a TOF spectrum for Ar 12+ on Ar collisions, a position spectrum obtained in O 2++He collisions, and a two-dimension spectrum for Ar 8++Ar collisions at 104 keV. The experimental results were analyzed in detail and 12 subprocesses were identified from the two-dimension spectrum.