针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题,提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格,利用K-means++聚类算法,根据公路车道线宽高固有特点,确定目标先验框数量和对应宽...针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题,提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格,利用K-means++聚类算法,根据公路车道线宽高固有特点,确定目标先验框数量和对应宽高值;其次根据聚类结果优化网络Anchor参数,使训练网络在车道线检测方面具有一定的针对性;最后将经过Darknet-53网络提取的特征进行拼接,改进YOLOv3算法卷积层结构,使用GPU进行多尺度训练得到最优的权重模型,从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验,实验结果表明,改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%,检测速度可达50帧/s,较YOLOv3原始算法mAP值提升了11%,且明显高于其他车道线检测方法.展开更多
为了满足工业上对织物缺陷检测的实时性要求,提出一种基于S-YOLOV3(Slimming You Only Look Once Version 3)模型的织物实时缺陷检测算法。首先使用K均值聚类算法确定目标先验框,以适应不同尺寸的缺陷;然后预训练YOLOV3模型得到权重参数...为了满足工业上对织物缺陷检测的实时性要求,提出一种基于S-YOLOV3(Slimming You Only Look Once Version 3)模型的织物实时缺陷检测算法。首先使用K均值聚类算法确定目标先验框,以适应不同尺寸的缺陷;然后预训练YOLOV3模型得到权重参数,利用批归一化层中的缩放因子γ评估每个卷积核的权重,将权重值低于阈值的卷积核进行剪枝以得到S-YOLOV3模型,实现模型压缩和加速;最后对剪枝后的网络进行微调以提高模型检测的准确率。实验结果表明:对于不同复杂纹理的织物,所提模型都能准确检测,且平均精度均值达到94%,剪枝后检测速度提高到55 FPS,所得的准确率与实时性均满足工业上的实际需求。展开更多
文摘针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题,提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格,利用K-means++聚类算法,根据公路车道线宽高固有特点,确定目标先验框数量和对应宽高值;其次根据聚类结果优化网络Anchor参数,使训练网络在车道线检测方面具有一定的针对性;最后将经过Darknet-53网络提取的特征进行拼接,改进YOLOv3算法卷积层结构,使用GPU进行多尺度训练得到最优的权重模型,从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验,实验结果表明,改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%,检测速度可达50帧/s,较YOLOv3原始算法mAP值提升了11%,且明显高于其他车道线检测方法.
文摘为了满足工业上对织物缺陷检测的实时性要求,提出一种基于S-YOLOV3(Slimming You Only Look Once Version 3)模型的织物实时缺陷检测算法。首先使用K均值聚类算法确定目标先验框,以适应不同尺寸的缺陷;然后预训练YOLOV3模型得到权重参数,利用批归一化层中的缩放因子γ评估每个卷积核的权重,将权重值低于阈值的卷积核进行剪枝以得到S-YOLOV3模型,实现模型压缩和加速;最后对剪枝后的网络进行微调以提高模型检测的准确率。实验结果表明:对于不同复杂纹理的织物,所提模型都能准确检测,且平均精度均值达到94%,剪枝后检测速度提高到55 FPS,所得的准确率与实时性均满足工业上的实际需求。