用新疆105个气象站监测资料,分析了2015年夏季高温过程的极端特征.2015年夏季新疆区域出现高温过程,从7月上旬后期开始,南疆东南部以及东疆最早出现日最高气温≥35℃的高温天气,进入中旬后高温范围迅速向西、向北蔓延发展,下旬初期范围...用新疆105个气象站监测资料,分析了2015年夏季高温过程的极端特征.2015年夏季新疆区域出现高温过程,从7月上旬后期开始,南疆东南部以及东疆最早出现日最高气温≥35℃的高温天气,进入中旬后高温范围迅速向西、向北蔓延发展,下旬初期范围达最大,南北疆均出现高温天气.新疆区域该次高温过程在7月中下旬最为强盛,全疆84.8%的测站(89站)出现高温;52.4%的测站(55站)的高温持续日数位居历史第1位;全疆21.9%的测站(23站)极端最高气温位居历史第1位,极端最高气温出现在吐鲁番东坎,达到47.7℃.这次高温过程造成8站夏季温度位居同期第1位,南疆及天山山区的7月平均气温位居历史同期第1位,有54.3%的测站(57站)7月平均气温突破同期历史极值.海拔3 544 m的天山山区大西沟站7月份日最高气温连续突破历史极值,22日达到20.7℃.高温过程中,新疆区域7月0℃层高度位居1991年以来同期第1位,其中,7月19-23日连续6 d位居1991年以来的第1位.天山开都河流域日0℃层高度持续33 d高于1991-2015年平均值.7月上旬到下旬,在500 h Pa高空,伊朗高压东移并控制新疆,是造成此次高温过程的直接原因.在100 h Pa高空,南亚高压的形态、中心位置、强度变化与新疆此次高温过程演变关系密切.高温过程造成新疆高山区冰雪迅速消融,引发塔里木河流域出现融雪(冰)型洪水.展开更多
为了找出多旋翼无人机喷洒农药时影响农药沉积的因素及其影响程度,提高雾滴在靶标上的沉积水平,并通过试验制定相应的试验方法和规范,在单因素试验的基础上,采用Box-Benhnken的中心组合试验设计理论对施药机具的喷雾参数进行研究.以飞...为了找出多旋翼无人机喷洒农药时影响农药沉积的因素及其影响程度,提高雾滴在靶标上的沉积水平,并通过试验制定相应的试验方法和规范,在单因素试验的基础上,采用Box-Benhnken的中心组合试验设计理论对施药机具的喷雾参数进行研究.以飞行高度、飞行速度、喷头流量等工作参数为影响因素,以雾滴在靶标上的沉积水平为目标函数,建立雾滴沉积水平的二次多项式数学模型,并分析模型的有效性与因子间的交互作用.利用Design-Expert 8.0.5软件的回归分析法和响应面分析法对模型进行优化分析,得到施药机最优喷洒参数组合.结果表明,对雾滴沉积水平影响大小依次为飞行高度、飞行速度、喷头流量;最优喷洒参数组合为飞行高度2.0 m,飞行速度3.7m·s^(-1),喷头流量430 m L·min^(-1),此条件下的雾滴在靶标上的最大沉积水平为68.69%,且与模型预测值相比相对误差为±5%以内.展开更多
According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. U...According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. Utilizing daily observations from 12 sounding stations and the annual runoff dataset from 34 hydrographical stations in Xinjiang for the period 1960-2002, the variance of the summertime 0℃ level height and the changing trends of river runoff are analyzed both qualitatively and quantitatively, through trend contrast of curves processed by a 5-point smoothing procedure and linear correlation. The variance of the summertime 0℃ level height in Xinjiang correlates well with that of the annual river runoff, especially since the early 1990s, but it differs from region to region, with both the average height of the 0℃ level and runoff quantity significantly increasing over time in the Al- tay-Tacheng and Tianshan Mountain regions but decreasing on the northern slope of the Kunlun Mountains. The correlation holds for the whole of Xinjiang as well as the three indi- vidual regions, with a 0.01 significance level. This indicates that in recent years, climate change in Xinjiang has affected not only the surface layer but also the upper levels of the atmosphere, and this raising and lowering of the summertime 0℃ level has a direct impact on the warming and wetting process in Xinjiang and the amount of river runoff. Warming due to climate change increases the height of the 0℃ level, but also speeds up, ice-snow melting in mountain regions, which in turn increases river runoff, leading to a season of plentiful water instead of the more normal low flow period.展开更多
Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC)...Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC),the change trends,abrupt change points,and their significance of runoff and 0℃ level height(FLH) were analyzed in ARNC in the last 50 years by using Mann-Kendall(MK) nonparametric test,and the quantitative relationship between runoff and FLH in summer was also analyzed with the linear regression and elastic coefficient methods.The results are indicated as follows:(1) in recent 50 years,there is a similar changing trend between the summer runoff and FLH in ARNC and each region has its own unique feature.The summer runoff has been significantly ascending in the Tianshan Mountains and on the northern slope of the Qilian Mountains(NSQM) compared to that of the northern slope of the Kunlun Mountains(NSKM).Likewise,the FLH has been taking on a markedly rising trend on the northern slopes of the Tianshan and Qilian Mountains(NSTM and NSQM) in comparison with the southern slope of the Tianshan Mountains(SSTM).However,the FLH on NSKM has been decreasing with the speed of 2.33 m every year.(2) Abrupt change analysis indicates that the period of abrupt change happened for summer runoff and FLH is totally different among the four typical study regions,and even in same region.(3) There is a positive significant relation between the summer runoff and FLH in ARNC(NSQM P <0.05;other three regions P <0.01).Therefore,the ascending and descending of the summer FLH is a vital factor inducing the change of summer runoff in ARNC.(4) The elastic coefficient of summer runoff to the change of summer FLH on NSKM,NSTM,NSQM,and SSTM are 7.19,3.80,2.79,and 6.63,respectively,which indicates that there exists the regional difference in the sensibility of summer runoff to the change of summer FLH in ARNC.The distinct proportion of glacial meltwater runoff is an important cause resulting in the regional difference of sensibility.展开更多
Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface...Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.展开更多
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r...The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.展开更多
文摘用新疆105个气象站监测资料,分析了2015年夏季高温过程的极端特征.2015年夏季新疆区域出现高温过程,从7月上旬后期开始,南疆东南部以及东疆最早出现日最高气温≥35℃的高温天气,进入中旬后高温范围迅速向西、向北蔓延发展,下旬初期范围达最大,南北疆均出现高温天气.新疆区域该次高温过程在7月中下旬最为强盛,全疆84.8%的测站(89站)出现高温;52.4%的测站(55站)的高温持续日数位居历史第1位;全疆21.9%的测站(23站)极端最高气温位居历史第1位,极端最高气温出现在吐鲁番东坎,达到47.7℃.这次高温过程造成8站夏季温度位居同期第1位,南疆及天山山区的7月平均气温位居历史同期第1位,有54.3%的测站(57站)7月平均气温突破同期历史极值.海拔3 544 m的天山山区大西沟站7月份日最高气温连续突破历史极值,22日达到20.7℃.高温过程中,新疆区域7月0℃层高度位居1991年以来同期第1位,其中,7月19-23日连续6 d位居1991年以来的第1位.天山开都河流域日0℃层高度持续33 d高于1991-2015年平均值.7月上旬到下旬,在500 h Pa高空,伊朗高压东移并控制新疆,是造成此次高温过程的直接原因.在100 h Pa高空,南亚高压的形态、中心位置、强度变化与新疆此次高温过程演变关系密切.高温过程造成新疆高山区冰雪迅速消融,引发塔里木河流域出现融雪(冰)型洪水.
文摘为了找出多旋翼无人机喷洒农药时影响农药沉积的因素及其影响程度,提高雾滴在靶标上的沉积水平,并通过试验制定相应的试验方法和规范,在单因素试验的基础上,采用Box-Benhnken的中心组合试验设计理论对施药机具的喷雾参数进行研究.以飞行高度、飞行速度、喷头流量等工作参数为影响因素,以雾滴在靶标上的沉积水平为目标函数,建立雾滴沉积水平的二次多项式数学模型,并分析模型的有效性与因子间的交互作用.利用Design-Expert 8.0.5软件的回归分析法和响应面分析法对模型进行优化分析,得到施药机最优喷洒参数组合.结果表明,对雾滴沉积水平影响大小依次为飞行高度、飞行速度、喷头流量;最优喷洒参数组合为飞行高度2.0 m,飞行速度3.7m·s^(-1),喷头流量430 m L·min^(-1),此条件下的雾滴在靶标上的最大沉积水平为68.69%,且与模型预测值相比相对误差为±5%以内.
基金Special Fund for Social Public Good Project of the Ministry of Science and Technology,No.IDM200603National Basic Research Program of China (973 Program), No.2010CB951001 National Natural Science Foundation of China,No.41075050,No.40775019 No.40875010
文摘According to climate features and river runoff conditions, Xinjiang could be divided into three research areas: The Altay-Tacheng region, the Tianshan Mountain region and the northern slope of the Kunlun Mountains. Utilizing daily observations from 12 sounding stations and the annual runoff dataset from 34 hydrographical stations in Xinjiang for the period 1960-2002, the variance of the summertime 0℃ level height and the changing trends of river runoff are analyzed both qualitatively and quantitatively, through trend contrast of curves processed by a 5-point smoothing procedure and linear correlation. The variance of the summertime 0℃ level height in Xinjiang correlates well with that of the annual river runoff, especially since the early 1990s, but it differs from region to region, with both the average height of the 0℃ level and runoff quantity significantly increasing over time in the Al- tay-Tacheng and Tianshan Mountain regions but decreasing on the northern slope of the Kunlun Mountains. The correlation holds for the whole of Xinjiang as well as the three indi- vidual regions, with a 0.01 significance level. This indicates that in recent years, climate change in Xinjiang has affected not only the surface layer but also the upper levels of the atmosphere, and this raising and lowering of the summertime 0℃ level has a direct impact on the warming and wetting process in Xinjiang and the amount of river runoff. Warming due to climate change increases the height of the 0℃ level, but also speeds up, ice-snow melting in mountain regions, which in turn increases river runoff, leading to a season of plentiful water instead of the more normal low flow period.
基金supported by National Basic Research Program of China(Grant No. 2010CB951003)
文摘Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC),the change trends,abrupt change points,and their significance of runoff and 0℃ level height(FLH) were analyzed in ARNC in the last 50 years by using Mann-Kendall(MK) nonparametric test,and the quantitative relationship between runoff and FLH in summer was also analyzed with the linear regression and elastic coefficient methods.The results are indicated as follows:(1) in recent 50 years,there is a similar changing trend between the summer runoff and FLH in ARNC and each region has its own unique feature.The summer runoff has been significantly ascending in the Tianshan Mountains and on the northern slope of the Qilian Mountains(NSQM) compared to that of the northern slope of the Kunlun Mountains(NSKM).Likewise,the FLH has been taking on a markedly rising trend on the northern slopes of the Tianshan and Qilian Mountains(NSTM and NSQM) in comparison with the southern slope of the Tianshan Mountains(SSTM).However,the FLH on NSKM has been decreasing with the speed of 2.33 m every year.(2) Abrupt change analysis indicates that the period of abrupt change happened for summer runoff and FLH is totally different among the four typical study regions,and even in same region.(3) There is a positive significant relation between the summer runoff and FLH in ARNC(NSQM P <0.05;other three regions P <0.01).Therefore,the ascending and descending of the summer FLH is a vital factor inducing the change of summer runoff in ARNC.(4) The elastic coefficient of summer runoff to the change of summer FLH on NSKM,NSTM,NSQM,and SSTM are 7.19,3.80,2.79,and 6.63,respectively,which indicates that there exists the regional difference in the sensibility of summer runoff to the change of summer FLH in ARNC.The distinct proportion of glacial meltwater runoff is an important cause resulting in the regional difference of sensibility.
基金supported by the National Natural Science Foundation of China(62074037)the Science and Technology Department of Fujian Province(2020I0006)the Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ124)。
文摘Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells.
基金National Natural Science Foundation of China (42041004)。
文摘The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.