影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被...影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被抽象为静态图,如社交网络及路网中节点间只在某些特定时间存在联系,即节点间的联系是具有时序性的.因此,本文研究了时序图影响力最大化问题,即在时序图上寻找k个顶点使得信息在特定的时间段内最大化传播.传播模型的选择和节点间传播概率的计算是影响力最大化问题的基础,由于基于静态图的IC(Independent Cascade model)传播模型无法应用于时序图,因此本文首先对IC模型进行改进,并提出了ICT(Independent Cascade model on Temporal graph)传播模型,使信息可以通过ICT传播模型在时序图上进行传播.而后通过改进PageRank算法来进行计算节点间的传播概率.然后在此基础上将时序图影响力最大化问题分为两步来进行实现.第一步首先研究时序图节点影响力的计算,并提出了用来计算节点影响力的SIC(Single Node Influence Computation)算法,然后通过对时序图中节点联系时序性这一特性的研究提出了一种改进算法ISIC(Improved SIC).第二步是在第一步结果的基础上来寻找k个种子节点,首先提出了一种基本的时序图影响力最大化算法BIMT(Basic Method for IMTG).但BIMT难以高效解决大规模时序图影响力最大化问题,因此通过优化节点边际效应的计算时间,提出了高效的AIMT(Advanced Method for IMTG)算法,然后通过避免某些节点边际效应的重复计算,对AIMT算法进行改进,从而提出了IMIT(Improved Method for IMTG)算法.最后通过大量实验验证了AIMT和IMIT两种算法高效性和扩展性,相比于BIMT算法,AIMT和IMIT可以更加快速地解决大规模时序图影响力最大化问题.展开更多
The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power fore...The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model.展开更多
The special characteristics of slowly moving infrared targets, such as containing only a few pixels,shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when im...The special characteristics of slowly moving infrared targets, such as containing only a few pixels,shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First, a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering,temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets,and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and has superior detection performance in comparison with several recent methods.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi...The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr...Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.展开更多
Methanol-to-olefins,as a promising non-oil pathway for the synthesis of light olefins,has been successfully industrialized.The accurate prediction of process variables can yield significant benefits for advanced proce...Methanol-to-olefins,as a promising non-oil pathway for the synthesis of light olefins,has been successfully industrialized.The accurate prediction of process variables can yield significant benefits for advanced process control and optimization.The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes,such as high nonlinearities,dynamics,and data distribution shift caused by diverse operating conditions.In this paper,we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues.Firstly,a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions.Subsequently,convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns.Meanwhile,a multi-graph convolutional network is leveraged to model the spatial interactions.Afterward,the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction.Finally,the outputs are denormalized to obtain the ultimate results.The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices,making the model more interpretable.Lastly,this model is deployed onto an end-to-end Industrial Internet Platform,which achieves effective practical results.展开更多
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode...Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.展开更多
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc...Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.展开更多
Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to impro...Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene.展开更多
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th...Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.展开更多
文摘影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被抽象为静态图,如社交网络及路网中节点间只在某些特定时间存在联系,即节点间的联系是具有时序性的.因此,本文研究了时序图影响力最大化问题,即在时序图上寻找k个顶点使得信息在特定的时间段内最大化传播.传播模型的选择和节点间传播概率的计算是影响力最大化问题的基础,由于基于静态图的IC(Independent Cascade model)传播模型无法应用于时序图,因此本文首先对IC模型进行改进,并提出了ICT(Independent Cascade model on Temporal graph)传播模型,使信息可以通过ICT传播模型在时序图上进行传播.而后通过改进PageRank算法来进行计算节点间的传播概率.然后在此基础上将时序图影响力最大化问题分为两步来进行实现.第一步首先研究时序图节点影响力的计算,并提出了用来计算节点影响力的SIC(Single Node Influence Computation)算法,然后通过对时序图中节点联系时序性这一特性的研究提出了一种改进算法ISIC(Improved SIC).第二步是在第一步结果的基础上来寻找k个种子节点,首先提出了一种基本的时序图影响力最大化算法BIMT(Basic Method for IMTG).但BIMT难以高效解决大规模时序图影响力最大化问题,因此通过优化节点边际效应的计算时间,提出了高效的AIMT(Advanced Method for IMTG)算法,然后通过避免某些节点边际效应的重复计算,对AIMT算法进行改进,从而提出了IMIT(Improved Method for IMTG)算法.最后通过大量实验验证了AIMT和IMIT两种算法高效性和扩展性,相比于BIMT算法,AIMT和IMIT可以更加快速地解决大规模时序图影响力最大化问题.
基金National Key Research and Development Program(No.2020YFB0905900)National Natural Science Foundation of China(No.51777065).
文摘The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model.
基金the National Natural Science Foundation of China(Nos.61273170 and 61503206)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ16F030002 and LZ15F030001)
文摘The special characteristics of slowly moving infrared targets, such as containing only a few pixels,shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First, a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering,temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets,and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and has superior detection performance in comparison with several recent methods.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)。
文摘The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
基金the National Natural Science Founda-tion of China(62062062)hosted by Gulila Altenbek.
文摘Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness.
基金the National Natural Science Foundation of China(Grant No.21991093)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA29050200)+1 种基金the Dalian Institute of Chemical Physics(DICP I202135)the Energy Science and Technology Revolution Project(Grant No.E2010412).
文摘Methanol-to-olefins,as a promising non-oil pathway for the synthesis of light olefins,has been successfully industrialized.The accurate prediction of process variables can yield significant benefits for advanced process control and optimization.The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes,such as high nonlinearities,dynamics,and data distribution shift caused by diverse operating conditions.In this paper,we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues.Firstly,a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions.Subsequently,convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns.Meanwhile,a multi-graph convolutional network is leveraged to model the spatial interactions.Afterward,the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction.Finally,the outputs are denormalized to obtain the ultimate results.The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices,making the model more interpretable.Lastly,this model is deployed onto an end-to-end Industrial Internet Platform,which achieves effective practical results.
基金Youth Innovation Promotion Association CAS,Grant/Award Number:2021103Strategic Priority Research Program of Chinese Academy of Sciences,Grant/Award Number:XDC02060500。
文摘Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.
基金supported by the National Natural Science Foundation of China (No.52075349)the National Natural Science Foundation of China (No.62303335)+1 种基金the Postdoctoral Researcher Program of China (No.GZC20231779)the Natural Science Foundation of Sichuan Province (No.2022NSFSC1942).
文摘Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.
基金the Science and Technology Program of State Grid Corporation of China(No.5211TZ1900S6)。
文摘Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene.
文摘Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.