期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
大规模时序图影响力最大化的算法研究 被引量:16
1
作者 吴安彪 袁野 +3 位作者 乔百友 王一舒 马玉亮 王国仁 《计算机学报》 EI CSCD 北大核心 2019年第12期2647-2664,共18页
影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被... 影响力最大化问题在社交网络中有着广泛的应用,一般地可以将社交网络抽象为静态图,影响力最大化问题是指在图中找出k个最有影响力的顶点,使得信息最大化传播.近年来对此问题的研究主要基于静态图,但是在现实中某些特定网络不可简单地被抽象为静态图,如社交网络及路网中节点间只在某些特定时间存在联系,即节点间的联系是具有时序性的.因此,本文研究了时序图影响力最大化问题,即在时序图上寻找k个顶点使得信息在特定的时间段内最大化传播.传播模型的选择和节点间传播概率的计算是影响力最大化问题的基础,由于基于静态图的IC(Independent Cascade model)传播模型无法应用于时序图,因此本文首先对IC模型进行改进,并提出了ICT(Independent Cascade model on Temporal graph)传播模型,使信息可以通过ICT传播模型在时序图上进行传播.而后通过改进PageRank算法来进行计算节点间的传播概率.然后在此基础上将时序图影响力最大化问题分为两步来进行实现.第一步首先研究时序图节点影响力的计算,并提出了用来计算节点影响力的SIC(Single Node Influence Computation)算法,然后通过对时序图中节点联系时序性这一特性的研究提出了一种改进算法ISIC(Improved SIC).第二步是在第一步结果的基础上来寻找k个种子节点,首先提出了一种基本的时序图影响力最大化算法BIMT(Basic Method for IMTG).但BIMT难以高效解决大规模时序图影响力最大化问题,因此通过优化节点边际效应的计算时间,提出了高效的AIMT(Advanced Method for IMTG)算法,然后通过避免某些节点边际效应的重复计算,对AIMT算法进行改进,从而提出了IMIT(Improved Method for IMTG)算法.最后通过大量实验验证了AIMT和IMIT两种算法高效性和扩展性,相比于BIMT算法,AIMT和IMIT可以更加快速地解决大规模时序图影响力最大化问题. 展开更多
关键词 时序图 影响力最大化 信息传播模型 边际效应 社交网络
下载PDF
大规模时序图数据的查询处理与挖掘技术综述 被引量:11
2
作者 王一舒 袁野 +1 位作者 刘萌 王国仁 《计算机研究与发展》 EI CSCD 北大核心 2018年第9期1889-1902,共14页
时序图作为一种带有时间维度的图结构,在图数据的查询处理与挖掘工作中扮演着越来越重要的角色.与传统的静态图不同,时序图的结构会随时间序列发生改变,即时序图的边由时间激活.而且由于时序图上每条边都有记录时间的标签,所以时序图包... 时序图作为一种带有时间维度的图结构,在图数据的查询处理与挖掘工作中扮演着越来越重要的角色.与传统的静态图不同,时序图的结构会随时间序列发生改变,即时序图的边由时间激活.而且由于时序图上每条边都有记录时间的标签,所以时序图包含的信息量相较于静态图也更为庞大,这使得现有的数据查询处理方法不能很好地应用于时序图中.因此如何解决时序图上的数据查询处理与挖掘问题得到研究者们的关注.对现有的时序图上的查询处理与挖掘方法进行了综述,详细介绍了时序图的应用背景和基本定义,梳理了现有的时序图模型,并从图查询处理方法、图挖掘方法和时序图管理系统3个方面对时序图上现有的工作进行了详细的介绍和分析.最后对时序图上可能的研究方向进行了展望,为相关研究提供参考. 展开更多
关键词 时序图 大规模图数据 图数据查询处理 图数据挖掘 图数据管理系统
下载PDF
基于关节点运动估计的人体行为识别 被引量:8
3
作者 李志晗 刘银华 +1 位作者 谢锐康 单良 《电子测量技术》 北大核心 2022年第24期153-160,共8页
基于人体骨骼数据分析人体行为的方法可解释性强,在基于视觉的人体行为分析研究中具有明显优势。但视角干扰及目标遮挡严重影响人体骨骼关节点的标定。本文提出了一种在人体结构约束条件下的基于人体姿态特征的人体骨骼关节点估计算法,... 基于人体骨骼数据分析人体行为的方法可解释性强,在基于视觉的人体行为分析研究中具有明显优势。但视角干扰及目标遮挡严重影响人体骨骼关节点的标定。本文提出了一种在人体结构约束条件下的基于人体姿态特征的人体骨骼关节点估计算法,并根据骨骼数据识别人体行为。首先根据人体运动的稳态趋势和暂态变化,基于决策树和加权线性回归分别建立特征提取模型,对缺失或混淆的关节点进行估计。然后设计了一个结合轻量级时间卷积和注意力图卷积的行为识别网络模型,针对行为样本的时间尺度优化模型。在NTU RGB+D 60数据集中建立遮挡情况进行实验,准确率分别达到90.28%(CV)与81.95%(CS),且在UTD-MHAD数据集中达到98.2%,均优于现有方法。 展开更多
关键词 行为识别 人体姿态估计 时间卷积 图卷积 运动估计
下载PDF
Spatio-temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms 被引量:8
4
作者 Xiaochong Dong Yingyun Sun +2 位作者 Ye Li Xinying Wang Tianjiao Pu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期388-398,共11页
The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power fore... The rapidly increasing wind power penetration presents new challenges to the operation of power systems.Improving the accuracy of wind power forecasting is a possible solution under this circumstance.In the power forecasting of mul-tiple wind farms,determining the spatio-temporal correlation of multiple wind farms is critical for improving the forecasting accuracy.This paper proposes a spatio-temporal convolutional network(STCN)that utilizes a directed graph convolutional structure.A temporal convolutional network is also adopted to characterize the temporal features of wind power.Historical data from 15 wind farms in Australia are used in the case study.The forecasting results show that the proposed model has higher accuracy than the existing methods.Based on the structure of the STCN,asymmetric spatial correlation at different temporal scales can be observed,which shows the effectiveness of the proposed model. 展开更多
关键词 Deep learning spatio-temporal correlation wind power forecasting graph conventional network(GCN).
原文传递
时态图最短路径查询方法 被引量:7
5
作者 张天明 徐一恒 +1 位作者 蔡鑫伟 范菁 《计算机研究与发展》 EI CSCD 北大核心 2022年第2期362-375,共14页
最短路径查询问题已被研究多年,然而,目前已有大部分工作主要集中在普通图上,针对时态图最短路径查询的研究工作相对较少.时态图中,2个顶点之间有多条边,每条边附带有时态区间,记录着边上代表事件的发生时间和结束时间.时态图最短路径... 最短路径查询问题已被研究多年,然而,目前已有大部分工作主要集中在普通图上,针对时态图最短路径查询的研究工作相对较少.时态图中,2个顶点之间有多条边,每条边附带有时态区间,记录着边上代表事件的发生时间和结束时间.时态图最短路径查询在城市交通路径规划、社交网络分析、通信网络挖掘等领域有着广泛的应用.由于最短时态路径的子路径不能保证是最优子结构,传统的普通图最短路径计算方法不再适用于时态图.因此提出了基于压缩转化图树(CTG-tree)索引的查询方法,该方法包含预处理和在线查询2个阶段.预处理阶段将时态图转化为普通图,提出了一种无损压缩方法将转化图压缩以减小图规模,采用层次划分技术将压缩有向图分解为若干个子图,并基于子图建立CTG-tree索引.CTG-tree中的节点保存相应子图内部分顶点之间的最短路径、孩子节点对应子图的边界点之间的最短路径、孩子节点对应子图的边界点与当前节点相应子图的边界点之间的最短路径信息.在线查询阶段基于构建的CTG-tree索引,提出了一种高效的最短路径查询方法.基于4个真实的时态图数据集实验结果表明,与现有方法相比,提出的方法具有更优的查询性能. 展开更多
关键词 最短路径 时态图 压缩有向图 树索引 查询方法
下载PDF
面向复杂网络图的环路挖掘算法研究进展
6
作者 刘笑婷 《现代信息科技》 2024年第18期33-38,共6页
环路作为一种特殊的模体,在揭示图的结构特征方面发挥着不可或缺的作用,能够帮助人们深入理解图的结构特点,得出更有价值的结论和科学预测。因此,环路挖掘一直是图研究领域中的热点问题之一。文章紧扣环路挖掘问题的研究脉络,从静态图... 环路作为一种特殊的模体,在揭示图的结构特征方面发挥着不可或缺的作用,能够帮助人们深入理解图的结构特点,得出更有价值的结论和科学预测。因此,环路挖掘一直是图研究领域中的热点问题之一。文章紧扣环路挖掘问题的研究脉络,从静态图和动态图两个维度,对图上的环路挖掘算法进行了全面细致的梳理,同时选取其中部分经典算法以更直观的方式展开进一步对比分析,并列出了相关研究所涉及的数据集与其对应的下载链接,便于读者能够更便捷地获取所需资源,展开进一步的探索与研究。 展开更多
关键词 图数据挖掘 有向图 时序图 环路
下载PDF
动态图神经网络链接预测综述
7
作者 张其 陈旭 +2 位作者 王叔洋 景永俊 宋吉飞 《计算机工程与应用》 CSCD 北大核心 2024年第20期49-67,共19页
在现实世界中,复杂的动态网络数据广泛存在,如社交网络、蛋白质相互作用网络和传染病传播网络,它们由大量的节点和边构成。针对这类数据的有效挖掘和利用,以进行精准预测,成为了一项关键任务。动态图神经网络链接预测是深度学习研究领... 在现实世界中,复杂的动态网络数据广泛存在,如社交网络、蛋白质相互作用网络和传染病传播网络,它们由大量的节点和边构成。针对这类数据的有效挖掘和利用,以进行精准预测,成为了一项关键任务。动态图神经网络链接预测是深度学习研究领域的一个重要分支,它旨在解析网络随时间演化的内在规律,并预测未来可能形成的链接,为各领域的决策提供有价值的信息和依据。回顾了动态图神经网络的发展历程,介绍动态图的建模方法和训练流程。在此基础上,根据时间粒度的不同,将动态图神经网络链接预测模型细分为离散动态图模型和连续动态图模型两大类,并综述了每一类别中当前主流模型所采用的建模方法;介绍了动态图链接预测研究中常用的数据集、评价指标和应用场景。最后,对该领域的未来发展趋势进行了前瞻性探讨。 展开更多
关键词 图神经网络 深度学习 动态图学习 链接预测 时间图
下载PDF
时序优先级约束的时序模式图强模拟匹配 被引量:1
8
作者 金浩宇 霍宏 方涛 《计算机技术与发展》 2023年第6期88-94,共7页
图模式匹配是一种在图数据上进行高效查询的重要方法,有着广泛的应用前景,例如知识发现、社交网络分析、智能问答等。大多数现有的研究工作都是基于静态的图数据,而现实生活中的图数据很多属于包含时间信息的时态图,针对时态图上的模式... 图模式匹配是一种在图数据上进行高效查询的重要方法,有着广泛的应用前景,例如知识发现、社交网络分析、智能问答等。大多数现有的研究工作都是基于静态的图数据,而现实生活中的图数据很多属于包含时间信息的时态图,针对时态图上的模式图匹配,该文提出了一种时序优先级约束的时序模式图强模拟匹配算法(Temporal Priority Constrained Graph Pattern Strong Simulation Matching,TPC-GPSSM)。该算法在模式图的图拓扑结构的匹配过程中加入时间顺序约束,即考虑了时态图中不同时态边之间的时序优先级,同时通过设置冗余顶点过滤规则来缩小搜索范围,优化时序检查的队列顺序,以达到提前剪枝、减少计算复杂度的目的。提出了时态边聚合度来评价算法对时态边的过滤效果,在三个时序数据集上的大量实验表明,相比传统的强模拟算法,所提算法能够有效过滤错误结果,并且在不同规模的数据图上均具有良好的性能表现。 展开更多
关键词 模式图匹配 时态图 强模拟 图模拟 时序模式图
下载PDF
Detecting slowly moving infrared targets using temporal filtering and association strategy 被引量:5
9
作者 Jing-li GAO Cheng-lin WEN +1 位作者 Zhe-jing BAO Mei-qin LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第11期1176-1185,共10页
The special characteristics of slowly moving infrared targets, such as containing only a few pixels,shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when im... The special characteristics of slowly moving infrared targets, such as containing only a few pixels,shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection algorithm based on temporal target detection and association strategy. First, a temporal target detection model is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering,temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the targets obtained at different times. The association relies on the motion characteristics and appearance of targets,and the association operation is performed many times to form continuous trajectories which can be used to help disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and has superior detection performance in comparison with several recent methods. 展开更多
关键词 temporal target detection Slowly moving targets graph matching Target association
原文传递
基于图向量计算的用户异常行为检测方法研究
10
作者 王永强 《电力大数据》 2024年第7期89-96,共8页
在电网企业的日常运营中,积累了大量的用户行为数据。监控和分析这些数据对于确保电网的安全和高效运行至关重要。文章提出了一种新的基于图向量计算的用户异常行为检测方法。该方法首先根据业务操作手册构建标准的业务流程图,然后根据... 在电网企业的日常运营中,积累了大量的用户行为数据。监控和分析这些数据对于确保电网的安全和高效运行至关重要。文章提出了一种新的基于图向量计算的用户异常行为检测方法。该方法首先根据业务操作手册构建标准的业务流程图,然后根据用户的时间序列行为数据建立行为链路,进而将复杂的用户行为转换为内容语义图。通过图向量化技术,将这些图转换为数值向量。使用支持向量机(support vector machine,SVM)模型对这些向量进行匹配计算,以识别用户行为与标准业务流程之间的差异。此外,该方法还对不同业务领域的异常行为进行了深入分析,以优化检测结果并提高检测的准确性和效率。实验结果表明,该检测方法能够有效识别和分析电网用户在不同业务领域中的异常行为,对增强电网系统的安全性和稳定性具有重要意义。 展开更多
关键词 用户行为分析 异常行为检测 时序行为 图构建 图向量化 SVM模型
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
11
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
12
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
13
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
IndRT-GCNets: Knowledge Reasoning with Independent Recurrent Temporal Graph Convolutional Representations
14
作者 Yajing Ma Gulila Altenbek Yingxia Yu 《Computers, Materials & Continua》 SCIE EI 2024年第1期695-712,共18页
Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurr... Due to the structural dependencies among concurrent events in the knowledge graph and the substantial amount of sequential correlation information carried by temporally adjacent events,we propose an Independent Recurrent Temporal Graph Convolution Networks(IndRT-GCNets)framework to efficiently and accurately capture event attribute information.The framework models the knowledge graph sequences to learn the evolutionary represen-tations of entities and relations within each period.Firstly,by utilizing the temporal graph convolution module in the evolutionary representation unit,the framework captures the structural dependency relationships within the knowledge graph in each period.Meanwhile,to achieve better event representation and establish effective correlations,an independent recurrent neural network is employed to implement auto-regressive modeling.Furthermore,static attributes of entities in the entity-relation events are constrained andmerged using a static graph constraint to obtain optimal entity representations.Finally,the evolution of entity and relation representations is utilized to predict events in the next subsequent step.On multiple real-world datasets such as Freebase13(FB13),Freebase 15k(FB15K),WordNet11(WN11),WordNet18(WN18),FB15K-237,WN18RR,YAGO3-10,and Nell-995,the results of multiple evaluation indicators show that our proposed IndRT-GCNets framework outperforms most existing models on knowledge reasoning tasks,which validates the effectiveness and robustness. 展开更多
关键词 Knowledge reasoning entity and relation representation structural dependency relationship evolutionary representation temporal graph convolution
下载PDF
A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process
15
作者 Jibin Zhou Xue Li +4 位作者 Duiping Liu Feng Wang Tao Zhang Mao Ye Zhongmin Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第4期73-85,共13页
Methanol-to-olefins,as a promising non-oil pathway for the synthesis of light olefins,has been successfully industrialized.The accurate prediction of process variables can yield significant benefits for advanced proce... Methanol-to-olefins,as a promising non-oil pathway for the synthesis of light olefins,has been successfully industrialized.The accurate prediction of process variables can yield significant benefits for advanced process control and optimization.The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes,such as high nonlinearities,dynamics,and data distribution shift caused by diverse operating conditions.In this paper,we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues.Firstly,a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions.Subsequently,convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns.Meanwhile,a multi-graph convolutional network is leveraged to model the spatial interactions.Afterward,the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction.Finally,the outputs are denormalized to obtain the ultimate results.The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices,making the model more interpretable.Lastly,this model is deployed onto an end-to-end Industrial Internet Platform,which achieves effective practical results. 展开更多
关键词 methanol-to-olefins process variables prediction spatial-temporal self-attention mechanism graph convolutional network
原文传递
带有节点编码能力感知的DTN数据转发机制 被引量:4
16
作者 王汝言 王燕燕 +1 位作者 刘乔寿 吴大鹏 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2295-2302,共8页
网络编码方法能够有效地改善延迟容忍网络的数据传输效率,其关键问题在于合理地选择编码节点。提出了一种带有节点编码能力感知的延迟容忍网络数据转发机制。根据网络中节点运行的历史相遇信息,建立时间图模型以感知节点之间的连接态势... 网络编码方法能够有效地改善延迟容忍网络的数据传输效率,其关键问题在于合理地选择编码节点。提出了一种带有节点编码能力感知的延迟容忍网络数据转发机制。根据网络中节点运行的历史相遇信息,建立时间图模型以感知节点之间的连接态势,并根据平均相遇时间间隔、最短路径长度及可达率等3方面因素综合确定节点转发能力,进而以动态的方式选择编码节点。结果表明,所提出的策略能够有效地提高网络资源利用率,改善网络的性能。 展开更多
关键词 延迟容忍网络 网络编码 时间图 数据转发
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
17
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
18
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection Spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
Real-Time Safety Behavior Detection Technology of Indoors Power Personnel Based on Human Key Points
19
作者 杨坚 李聪敏 +5 位作者 洪道鉴 卢东祁 林秋佳 方兴其 喻谦 张乾 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期309-315,共7页
Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to impro... Safety production is of great significance to the development of enterprises and society.Accidents often cause great losses because of the particularity environment of electric power.Therefore,it is important to improve the safety supervision and protection in the electric power environment.In this paper,we simulate the actual electric power operation scenario by monitoring equipment and propose a real-time detection method of illegal actions based on human body key points to ensure safety behavior in real time.In this method,the human body key points in video frames were first extracted by the high-resolution network,and then classified in real time by spatial-temporal graph convolutional network.Experimental results show that this method can effectively detect illegal actions in the simulated scene. 展开更多
关键词 real-time behavior recognition human key points high-resolution network spatial-temporal graph convolutional network
原文传递
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
20
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 Spatio-temporal prediction infectious diseases graph neural networks
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部