Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. A...Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. As the greatest consumers of N fertilizer in the world, Chinese farmers have overused N, and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship. To address this problem, this study evaluated the total and dynamic N requirement for different yield ranges of two major crops (maize and wheat), and suggested improvements to N management strategies. Whole-plant N aboveground uptake requirement per grain yield (Nreq) initially deceased with grain yield improvement and then stagnated, and yet most farmers still believed that more fertilizer and higher grain yield were synonymous. When maize yield increased from 〈 7.5 to 〉 12.0 Mg ha-I, Nreq decreased from 19.8 to 17.0 kg Mg-1 grain. For wheat, it decreased from 27.1 kg Mg-1 grain for grain yield 〈 4.5 Mg ha-1 to 22.7 kg Mg-1 grain for yield 〉 9.0 Mg ha-1. Meanwhile, the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield, which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages. We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
Precise Point Positioning(PPP),initially developed for the analysis of the Global Positing System(GPS)data from a large geodetic network,gradually becomes an effective tool for positioning,timing,remote sensing of atm...Precise Point Positioning(PPP),initially developed for the analysis of the Global Positing System(GPS)data from a large geodetic network,gradually becomes an effective tool for positioning,timing,remote sensing of atmospheric water vapor,and monitoring of Earth’s ionospheric Total Electron Content(TEC).The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP.In this contribution,it is shown this assumption is not always valid and can lead to the degradation of PPP performance,especially for Slant TEC(STEC)retrieval and timing.For this reason,the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies.It is different from the Modified Carrier-to-Code Leveling(MCCL)method which can only obtain the variations of Receiver Differential Code Biases(RDCBs),i.e.,the difference between the two frequencies’code biases.In the Modified PPP(MPPP)model,the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters,such as ambiguity parameters,receiver clock offsets,and ionospheric delays,are mitigated.This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations.The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature.With the modified functional model,an improvement by 42%to 96%is achieved in the Differences of STEC(DSTEC)compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free(GF)carrier phase observations.The medium and long term(1×10^(4) to 1.5×10^(4) s)frequency stability of receiver clocks are also signifi-cantly improved.展开更多
基金supported by the National Basic Research Program(973 Program) of China(No.2015CB150402)the National Maize Production System in China(No.CARS-02-24)+1 种基金the Special Fund for Agroscientific Research in the Public Interest of China (No.201103003)the Innovative Group Grant of the NSFC,China(No.31421092)
文摘Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. As the greatest consumers of N fertilizer in the world, Chinese farmers have overused N, and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship. To address this problem, this study evaluated the total and dynamic N requirement for different yield ranges of two major crops (maize and wheat), and suggested improvements to N management strategies. Whole-plant N aboveground uptake requirement per grain yield (Nreq) initially deceased with grain yield improvement and then stagnated, and yet most farmers still believed that more fertilizer and higher grain yield were synonymous. When maize yield increased from 〈 7.5 to 〉 12.0 Mg ha-I, Nreq decreased from 19.8 to 17.0 kg Mg-1 grain. For wheat, it decreased from 27.1 kg Mg-1 grain for grain yield 〈 4.5 Mg ha-1 to 22.7 kg Mg-1 grain for yield 〉 9.0 Mg ha-1. Meanwhile, the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield, which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages. We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.
基金the National Natural Science Foundation of China(Grant No.41774042)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20190063)The first author is supported by the Chinese Academy of Sciences(CAS)Pioneer Hundred Talents Program.
文摘Precise Point Positioning(PPP),initially developed for the analysis of the Global Positing System(GPS)data from a large geodetic network,gradually becomes an effective tool for positioning,timing,remote sensing of atmospheric water vapor,and monitoring of Earth’s ionospheric Total Electron Content(TEC).The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP.In this contribution,it is shown this assumption is not always valid and can lead to the degradation of PPP performance,especially for Slant TEC(STEC)retrieval and timing.For this reason,the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies.It is different from the Modified Carrier-to-Code Leveling(MCCL)method which can only obtain the variations of Receiver Differential Code Biases(RDCBs),i.e.,the difference between the two frequencies’code biases.In the Modified PPP(MPPP)model,the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters,such as ambiguity parameters,receiver clock offsets,and ionospheric delays,are mitigated.This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations.The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature.With the modified functional model,an improvement by 42%to 96%is achieved in the Differences of STEC(DSTEC)compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free(GF)carrier phase observations.The medium and long term(1×10^(4) to 1.5×10^(4) s)frequency stability of receiver clocks are also signifi-cantly improved.