By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence re...By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.展开更多
A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg ...A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.展开更多
By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equi...By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.展开更多
In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasico...In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.展开更多
基金Supported by NSF of Chongqing and Science Foundations of Chongqing Jia1otong University
文摘By using Fort theorem the generic stability result for the system of generalized vector equilibrium problems is established. Further, by proving the existence and connectivity of minimal essential set the existence result of essential components in the solution set is derived.
基金This project is supported by the NSF of Sichuan Education Department of China (2003A081 and SZD0406)
文摘A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.
基金This project was supported by the NSF of Sichuan Education of China(2003A081)and SZD0406
文摘By applying a maximal element theorem on product FC-space due to author, some new equilibrium existence theorems for generalized games with fuzzy constraint correspondences are proved in FC-spaces. By using these equilibrium existence theorems, some new existence theorems of solutions for the system of generalized vector quasi-equilibrium problems are established in noncompact product FC-spaces. These results improve and generalize some recent results in literature to product FC-spaces without any convexity structure.
基金supported by the Scientific Research Fun of Sichuan Normal University (09ZDL04)the Sichuan Province Leading Academic Discipline Project (SZD0406)
文摘In this article, four new classes of systems of generalized vector quasi-equilibrium problems are introduced and studied in FC-spaces without convexity structure. The notions of Ci(x)-FC-partially diagonally quasiconvex, Ci(x)-FC-quasiconvex, and Ci(x)-FC- quasiconvex-like for set-valued mappings are also introduced in FC-spaces. By applying these notions and a maximal element theorem, the nonemptyness and compactness of solution sets for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. As applications, some new existence theorems of solutions for mathematical programs with system of generalized vector quasi-equilibrium constraints are obtained in FC-spaces. These results improve and generalize some recent known results in literature.
基金Supported by the National Natural Science Foundation of China(11061023)Natural Science Foundation of Jiangxi Province(2010GZS0176)Doctor Startup Project(EA200907383)