摘要
在没有凸性结构的FC-空间内对集值映像引入了G_i(x)-FC-对角拟凸,C_i(x)- FC-拟凸,和G_i(x)-FC-拟似凸概念,应用这些概念和作者在乘积FC-空间内对一族集值映像得到的极大元存在性定理,在非紧FC-空间内对四类广义矢量拟平衡问题组的解证明了某些新的存在性定理。这些定理改进和推广了文献中的某些最近的已知结果到非紧FC-空间。
The notions of Ci(x)-FC-diagonally quasiconvex, Ci(x)-FC-quasiconvex and Ci(x)-FC-quasiconvex-like for set-valued mappings are introduced in FC-spaces without any convexity structure. By applying these notions and a maximal element theorem for a family of set-valued mappings on product FC-space due to author, some new existence theorems of solutions for four classes of systems of generalized vector quasi-equilibrium problems are proved in noncompact FC-spaces. These results improve and generalize some recent known results in literature to noncompact FC- spaces.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2009年第5期919-930,共12页
Acta Mathematica Sinica:Chinese Series
基金
四川省教育厅重点科研基金资助项目(07ZA092)
SZD0406资助项目
关键词
极大元
广义矢量拟平衡问题组
FC-包
maximal element
system of generalized vector quasi-equilibrium problems
FC--hull