In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations....In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.展开更多
Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the s...Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.展开更多
文摘In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No. BUPT2013RC0902
文摘Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation.