期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation 被引量:1
1
作者 WANGQi CHENYong ZHANGHong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期975-982,共8页
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations.... In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases. 展开更多
关键词 elliptic equation rational expansion method rational form solitary wavesolutions rational form jacobi and weierstrass doubly periodic wave solutions symboliccomputation (1+1)-dimensional dispersive long wave equation
下载PDF
一组耗散Hamilton系统鲁棒自适应控制器参数化 被引量:1
2
作者 曹忠 侯晓荣 赵文静 《控制工程》 CSCD 北大核心 2017年第7期1371-1379,共9页
研究了多个既有外部干扰又有内部参数摄动的耗散Hamilton系统的鲁棒自适应同时镇定控制问题。设计了一簇含调节参数的H?自适应同时镇定控制器,并且利用符号计算的方法给出满足含参数多项式半正定的调节参数的取值范围的算法。这种控制... 研究了多个既有外部干扰又有内部参数摄动的耗散Hamilton系统的鲁棒自适应同时镇定控制问题。设计了一簇含调节参数的H?自适应同时镇定控制器,并且利用符号计算的方法给出满足含参数多项式半正定的调节参数的取值范围的算法。这种控制器参数化的方法利用耗散Hamilton系统的结构特点避开Hamilton-Jacob-Issacc(HJI)不等式的求解,因此得到的含调节参数的控制器形式简单,易于实现。仿真结果表明:得到的参数化的控制器对多个耗散Hamilton系统的H?自适应同时镇定非常有效,且在参数调节范围内,控制器具有进一步优化鲁棒性能的作用。 展开更多
关键词 耗散Hamilton系统 鲁棒自适应同时镇定控制 控制器参数化 符号计算
下载PDF
Wronskian Form Solutions for a Variable Coefficient Kadomtsev-Petviashvili Equation
3
作者 LU Zhuo-Sheng REN Wen-Xiu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第3期339-343,共5页
Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the s... Starting from a simple transformation, and with the aid of symbolic computation, we establish the relationship between the solution of a generalized variable coefficient Kadomtsev–Petviashvili(vKP) equation and the solution of a system of linear partial differential equations. According to this relation, we obtain Wronskian form solutions of the vKP equation, and further present N-soliton-like solutions for some degenerated forms of the vKP equation. Moreover,we also discuss the influences of arbitrary constants on the soliton and N-soliton solutions of the KPII equation. 展开更多
关键词 variable coefficient KP equation wronsian form solution multi-soliton-like solution symboliccomputation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部