After the careful analysis on the factors affecting the emulsification of the dispersion system consisting of oil, water and surfactant, and investigation on the mechanism for the formation of emulsions, a mathematica...After the careful analysis on the factors affecting the emulsification of the dispersion system consisting of oil, water and surfactant, and investigation on the mechanism for the formation of emulsions, a mathematical model to be used in the emulsification was derived finally. By comparing the results of experiments with the results concluded from the mathematical model, it was found that the model was reasonable and useful in the investigation of emulsifications.展开更多
This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated ...This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated and confined the droplets by three-dimensional (3D) poly(dimethylsiloxane)-based microchannels, STORM systems provide two- dimensional (2D) platforms for control of droplets. STORM devices utilize surface energy, with methods such as surface chemical modification and mechanical processing, to control the movement of fluid droplets. Various STORM devices have been readily prepared, with distinct advantages over conventional droplet microfluidics, which generated and confined the droplets by 3D poly(dimethylsiloxane)-based microchannels, such as significant reduction of energy consumption neces- sary for device operation, facile or even direct introduction of droplets onto patterned surface without external driving force such as a micropump, thus increased frequency or efficiency of droplets generation of specific STORM device, among others. Thus, STORM devices can be excellent alternatives for majority areas in droplet microfluidics and irreplaceable choices in certain fields by contrast. In this review, fabrication methods or strategies, manipulation methods or mechanisms, and main applications of STORM devices are introduced.展开更多
文摘After the careful analysis on the factors affecting the emulsification of the dispersion system consisting of oil, water and surfactant, and investigation on the mechanism for the formation of emulsions, a mathematical model to be used in the emulsification was derived finally. By comparing the results of experiments with the results concluded from the mathematical model, it was found that the model was reasonable and useful in the investigation of emulsifications.
基金Project supported by the Shanghai Pujiang Program(Grant No.16PJ1403200)the Research Grant(Grant No.16DZ2260601)from Science and Technology Commission of Shanghai Municipality
文摘This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated and confined the droplets by three-dimensional (3D) poly(dimethylsiloxane)-based microchannels, STORM systems provide two- dimensional (2D) platforms for control of droplets. STORM devices utilize surface energy, with methods such as surface chemical modification and mechanical processing, to control the movement of fluid droplets. Various STORM devices have been readily prepared, with distinct advantages over conventional droplet microfluidics, which generated and confined the droplets by 3D poly(dimethylsiloxane)-based microchannels, such as significant reduction of energy consumption neces- sary for device operation, facile or even direct introduction of droplets onto patterned surface without external driving force such as a micropump, thus increased frequency or efficiency of droplets generation of specific STORM device, among others. Thus, STORM devices can be excellent alternatives for majority areas in droplet microfluidics and irreplaceable choices in certain fields by contrast. In this review, fabrication methods or strategies, manipulation methods or mechanisms, and main applications of STORM devices are introduced.