Aim: To investigate the expression and subcellular localization of chemokine-like factor superfamily 2 (CKLFSF2) in human testis and its potential role in spermatogenesis. Methods: A specific polyclonal antibody a...Aim: To investigate the expression and subcellular localization of chemokine-like factor superfamily 2 (CKLFSF2) in human testis and its potential role in spermatogenesis. Methods: A specific polyclonal antibody against CKLFSF2 was raised. The expression and cellular localization of CKLFSF2 in the seminiferous tubules was checked by immunohistochemistry method. Also, in situ hybridization was applied to localize the mRNA distribution. The EGFP- CKLFSF2 fusion protein was expressed in COS-7 cells to localize its subcellular location in vitro. In addition, the abnormal expression of CKLFSF2 in testes of patients with male infertility was assayed by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry methods. Results: Having a close correlation with spermatogenesis defects, CKLFSF2 was specifically expressed in meiotic and post-meiotic germ cells, which were localized to the endoplasmic reticulum (ER) near the Golgi apparatus. Conclusion: CKLFSF2 could play important roles in the process of meiosis and spermiogenesis, and might be involved in the vesicular transport or membrane apposition events in the endoplasmic reticulum.展开更多
Cytokines are indispensable signals of the mucosaassociated immune system for maintaining normal gut homeostasis.An imbalance of their profile in favour of inflammation initiation may lead to disease states,such as th...Cytokines are indispensable signals of the mucosaassociated immune system for maintaining normal gut homeostasis.An imbalance of their profile in favour of inflammation initiation may lead to disease states,such as that is observed in inflammatory bowel diseases(IBD).Although Crohn's disease(CD) is often described as a prototype of T-helper 1-type diseases,and ulcerative colitis(UC) is traditionally viewed as a T-helper 2-mediated condition,the classic paradigm,which categorises cytokines into pro-and anti-inflammatory groups,has recently been changed.The inflammation regulatory pathways may not be mutually exclusive as individual cytokines can have diverse and even opposing functions in various clinical and immunological settings.None the less there are many common immunological responses in IBD that are mediated by cytokines.Although they regulate and influence the development,course and recurrence of the inflammatory process,the concrete pathogenic role of these small signaling molecules is sometimes not unambiguous in the subtypes of the disease.Our aim is to review the current information about pro-and anti-inflammatory effects of traditionally studied and recently discovered cytokines in the pathogenesis of UC and CD.The better understanding of their production and functional activity may lead to the development of new therapeutic modalities.展开更多
Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-relat...Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues. Methods cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment. Results In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22). Conclusion This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.展开更多
Mesenchymal stem cells(MSCs)are ubiquitously-existing multipotent progenitors that can self-renew and differentiate into multiple lineages including osteocytes,chondrocytes,adipocytes,tenocytes and myocytes.MSCs repre...Mesenchymal stem cells(MSCs)are ubiquitously-existing multipotent progenitors that can self-renew and differentiate into multiple lineages including osteocytes,chondrocytes,adipocytes,tenocytes and myocytes.MSCs represent one of the most commonly-used adult progenitors and serve as excellent progenitor cell models for investigating lineagespecific differentiation regulated by various cellular signaling pathways,such as bone morphogenetic proteins(BMPs).As members of TGFb superfamily,BMPs play diverse and important roles in development and adult tissues.At least 14 BMPs have been identified in mammals.Different BMPs exert distinct but overlapping biological functions.Through a comprehensive analysis of 14 BMPs in MSCs,we demonstrated that BMP9 is one of the most potent BMPs in inducing osteogenic differentiation of MSCs.Nonetheless,a global mechanistic view of BMP signaling in regulating the proliferation and differentiation of MSCs remains to be fully elucidated.Here,we conducted a comprehensive transcriptomic profiling in the MSCs stimulated by 14 types of BMPs.Hierarchical clustering analysis classifies 14 BMPs into three subclusters:an osteo/chondrogenic/adipogenic cluster,a tenogenic cluster,and BMP3 cluster.We also demonstrate that six BMPs(e.g.,BMP2,BMP3,BMP4,BMP7,BMP8,and BMP9)can induce ISmads effectively,while BMP2,BMP3,BMP4,BMP7,and BMP11 up-regulate Smad-independent MAP kinase pathway.Furthermore,we show that many BMPs can upregulate the expression of the signal mediators of Wnt,Notch and PI3K/AKT/mTOR pathways.While the reported transcriptomic changes need to be further validated,our expression profiling represents the first-of-its-kind to interrogate a comprehensive transcriptomic landscape regulated by the 14 types of BMPs in MSCs.展开更多
To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N...To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N-terminal amino acid sequences.According to the determined mature protein,recombinant human RNase 9 was prepared in E.coli.Ribonucleolytic activity and antibacterial activity of recombinant human RNase 9 were detected,and the distribution of human RNase 9 on tissues and ejaculated spermatozoa and in vitro capacitated spermatozoa were analyzed via indirect immunofluorescence assay.The results showed that recombinant human RNase 9 did not exhibit detectable ribonucleolytic activity against yeast tRNA,but exhibited antibacterial activity,in a concentration/time dependent manner,against E.coli.Immunofluorescent analyses showed that the predicted human RNase 9 was present throughout the epididymis,but not present in other tissues examined,and human RNase 9 was also present on the entire head and neck regions of human ejaculated spermatozoa and in vitro capacitated spermatozoa.These results suggest that human RNase 9 may play roles in host defense of male reproductive tract.展开更多
Lysosomes break down various biomolecules and spinster is one of the major efflux carriers removing degradation products from lysosomal lumen to keep it in healthy size and proper function.Although it is well establis...Lysosomes break down various biomolecules and spinster is one of the major efflux carriers removing degradation products from lysosomal lumen to keep it in healthy size and proper function.Although it is well established that a dysfunctional spinster will cause enlarged lysosomes and in turn lead to developmental defects and abnormal behavior in animals,little was known about the transportation mechanism and substrate specificity of spinster.Here,we report a crystal structure of spinster homolog from Hyphomonas neptunium,HnSPNS,in its inward-facing conformation with and without substrate bound.HnSPNS is crystallized in a monomer and a substrate-binding cavity was formed in the center of its transmembrane helices.A blob of electron density corresponding to its substrate was found in the cavity near a conserved residue,R42,which is locked in position by the interactions with conserved residues E129 and R122.Our results suggest that human spinster serves as a transporter translocating negativelycharged lipophilic small molecules and E129 might serve as a switch to control the conformational change via its protonation-deprotonation cycle.展开更多
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the bloo...The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progre展开更多
The development of flowers in soybean(Glycine max)is essential for determining the yield potential of the plant.Gene silencing pathways are involved in modulating flower development,but their full elucidation is still...The development of flowers in soybean(Glycine max)is essential for determining the yield potential of the plant.Gene silencing pathways are involved in modulating flower development,but their full elucidation is still incomplete.Here,we conducted a forward genetic screen and identified an abnormal flower mutant,deformed floral bud1-1(Gmdfb1-1),in soybean.We mapped and identified the causal gene,which encodes a member of the armadillo(ARM)-repeat superfamily.Using small RNA sequencing(sRNA-seq),we found an abnormal accumulation of small interfering RNAs(si RNAs)and microRNA(miRNAs)in the Gmdfb1 mutants.We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7(Gm SKI7).Additionally,GmDFB1 interacts with the PIWI domain of ARGONAUTE 1(GmAGO1)to inhibit the cleavage efficiency on the target genes of s RNAs.The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development.This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bla...OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucid展开更多
基金Acknowledgment This work was supported by grants from National Natural Science Foundation of China (No. 30471729) and the "211" Project of the "Tenth-Five" Program for Peking University Health Science Center, China (No. 219).
文摘Aim: To investigate the expression and subcellular localization of chemokine-like factor superfamily 2 (CKLFSF2) in human testis and its potential role in spermatogenesis. Methods: A specific polyclonal antibody against CKLFSF2 was raised. The expression and cellular localization of CKLFSF2 in the seminiferous tubules was checked by immunohistochemistry method. Also, in situ hybridization was applied to localize the mRNA distribution. The EGFP- CKLFSF2 fusion protein was expressed in COS-7 cells to localize its subcellular location in vitro. In addition, the abnormal expression of CKLFSF2 in testes of patients with male infertility was assayed by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry methods. Results: Having a close correlation with spermatogenesis defects, CKLFSF2 was specifically expressed in meiotic and post-meiotic germ cells, which were localized to the endoplasmic reticulum (ER) near the Golgi apparatus. Conclusion: CKLFSF2 could play important roles in the process of meiosis and spermiogenesis, and might be involved in the vesicular transport or membrane apposition events in the endoplasmic reticulum.
文摘Cytokines are indispensable signals of the mucosaassociated immune system for maintaining normal gut homeostasis.An imbalance of their profile in favour of inflammation initiation may lead to disease states,such as that is observed in inflammatory bowel diseases(IBD).Although Crohn's disease(CD) is often described as a prototype of T-helper 1-type diseases,and ulcerative colitis(UC) is traditionally viewed as a T-helper 2-mediated condition,the classic paradigm,which categorises cytokines into pro-and anti-inflammatory groups,has recently been changed.The inflammation regulatory pathways may not be mutually exclusive as individual cytokines can have diverse and even opposing functions in various clinical and immunological settings.None the less there are many common immunological responses in IBD that are mediated by cytokines.Although they regulate and influence the development,course and recurrence of the inflammatory process,the concrete pathogenic role of these small signaling molecules is sometimes not unambiguous in the subtypes of the disease.Our aim is to review the current information about pro-and anti-inflammatory effects of traditionally studied and recently discovered cytokines in the pathogenesis of UC and CD.The better understanding of their production and functional activity may lead to the development of new therapeutic modalities.
文摘Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues. Methods cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment. Results In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22). Conclusion This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.
文摘Mesenchymal stem cells(MSCs)are ubiquitously-existing multipotent progenitors that can self-renew and differentiate into multiple lineages including osteocytes,chondrocytes,adipocytes,tenocytes and myocytes.MSCs represent one of the most commonly-used adult progenitors and serve as excellent progenitor cell models for investigating lineagespecific differentiation regulated by various cellular signaling pathways,such as bone morphogenetic proteins(BMPs).As members of TGFb superfamily,BMPs play diverse and important roles in development and adult tissues.At least 14 BMPs have been identified in mammals.Different BMPs exert distinct but overlapping biological functions.Through a comprehensive analysis of 14 BMPs in MSCs,we demonstrated that BMP9 is one of the most potent BMPs in inducing osteogenic differentiation of MSCs.Nonetheless,a global mechanistic view of BMP signaling in regulating the proliferation and differentiation of MSCs remains to be fully elucidated.Here,we conducted a comprehensive transcriptomic profiling in the MSCs stimulated by 14 types of BMPs.Hierarchical clustering analysis classifies 14 BMPs into three subclusters:an osteo/chondrogenic/adipogenic cluster,a tenogenic cluster,and BMP3 cluster.We also demonstrate that six BMPs(e.g.,BMP2,BMP3,BMP4,BMP7,BMP8,and BMP9)can induce ISmads effectively,while BMP2,BMP3,BMP4,BMP7,and BMP11 up-regulate Smad-independent MAP kinase pathway.Furthermore,we show that many BMPs can upregulate the expression of the signal mediators of Wnt,Notch and PI3K/AKT/mTOR pathways.While the reported transcriptomic changes need to be further validated,our expression profiling represents the first-of-its-kind to interrogate a comprehensive transcriptomic landscape regulated by the 14 types of BMPs in MSCs.
基金The authors would like to thank Mr Shou-Xin Zhang and other members of the Research Center,Yuhuangding Hospital(Yantai,China)for technical assistance.
文摘To explore the functions of human ribonuclease 9(RNase 9),we constructed a mammalian fusion expression vector pcDNA-hRNase9,prepared recombinant human RNase 9-His fusion protein from HEK293T cells and determined its N-terminal amino acid sequences.According to the determined mature protein,recombinant human RNase 9 was prepared in E.coli.Ribonucleolytic activity and antibacterial activity of recombinant human RNase 9 were detected,and the distribution of human RNase 9 on tissues and ejaculated spermatozoa and in vitro capacitated spermatozoa were analyzed via indirect immunofluorescence assay.The results showed that recombinant human RNase 9 did not exhibit detectable ribonucleolytic activity against yeast tRNA,but exhibited antibacterial activity,in a concentration/time dependent manner,against E.coli.Immunofluorescent analyses showed that the predicted human RNase 9 was present throughout the epididymis,but not present in other tissues examined,and human RNase 9 was also present on the entire head and neck regions of human ejaculated spermatozoa and in vitro capacitated spermatozoa.These results suggest that human RNase 9 may play roles in host defense of male reproductive tract.
基金supported by the National Key Research and Development Program of China (2017YFC1001303 and 2018YFC1004704)NSFC-CAS Joint Fund for Research Based on Large-Scale Scientific Facilities (U1632132)+1 种基金NSFC General Program (31670849)SHIPM-pi fund (JY201804) from Shanghai Institute of Precision Medicine, Ninth People’s Hospital Shanghai Jiao Tong University School of Medicine
文摘Lysosomes break down various biomolecules and spinster is one of the major efflux carriers removing degradation products from lysosomal lumen to keep it in healthy size and proper function.Although it is well established that a dysfunctional spinster will cause enlarged lysosomes and in turn lead to developmental defects and abnormal behavior in animals,little was known about the transportation mechanism and substrate specificity of spinster.Here,we report a crystal structure of spinster homolog from Hyphomonas neptunium,HnSPNS,in its inward-facing conformation with and without substrate bound.HnSPNS is crystallized in a monomer and a substrate-binding cavity was formed in the center of its transmembrane helices.A blob of electron density corresponding to its substrate was found in the cavity near a conserved residue,R42,which is locked in position by the interactions with conserved residues E129 and R122.Our results suggest that human spinster serves as a transporter translocating negativelycharged lipophilic small molecules and E129 might serve as a switch to control the conformational change via its protonation-deprotonation cycle.
基金supported by the National Natural Science Foundation of China,No.82104412(to TD)Shaanxi Provincial Key R&D Program,No.2023-YBSF-165(to TD)+1 种基金the Natural Science Foundation of Shaanxi Department of Science and Technology,No.2018JM7022(to FM)Shaanxi Provincial Key Industry Chain Project,No.2021ZDLSF04-11(to PW)。
文摘The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment;however,the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood.The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function.It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier,in addition to the transport of lipids,such as docosahexaenoic acid,across the blood-brain barrier.Furthermore,an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases;however,little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier.This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier,including their basic structures and functions,cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier,and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability.This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date.This will not only help to elucidate the pathogenesis of neurological diseases,improve the accuracy of laboratory diagnosis,and optimize clinical treatment strategies,but it may also play an important role in prognostic monitoring.In addition,the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progre
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFF1001201 and 2022YFF1001601-4)Key Research and Development Program of Shandong Province(Grant Nos.2023LZGC008 and 2021LZGC003)+7 种基金the National Scientific and Technological Innovation 2030-Major Project(Grant No.2023ZD040360102)the Joint Funds of the National Natural Science Foundation of China(Grant No.U1906203)the National Transgenic Project of China(Grant Nos.2016ZX08010002-009 and 2018ZX08009-14B)Taishan Scholar Youth Project of Shandong Province(Grant No.tsqn202306072)Young Scientists Fund of the National Natural Science Foundation of China(Grant No.32301876)Natural Science Foundation of Shandong Province Youth Fund(Grant No.ZR2023QC180)Qingdao Natural Science Foundation(Grant No.23-2-1-38-zyyd-jch)Shandong University Qilu Young Scholar。
文摘The development of flowers in soybean(Glycine max)is essential for determining the yield potential of the plant.Gene silencing pathways are involved in modulating flower development,but their full elucidation is still incomplete.Here,we conducted a forward genetic screen and identified an abnormal flower mutant,deformed floral bud1-1(Gmdfb1-1),in soybean.We mapped and identified the causal gene,which encodes a member of the armadillo(ARM)-repeat superfamily.Using small RNA sequencing(sRNA-seq),we found an abnormal accumulation of small interfering RNAs(si RNAs)and microRNA(miRNAs)in the Gmdfb1 mutants.We further demonstrated that GmDFB1 interacts with the RNA exosome cofactor SUPER KILLER7(Gm SKI7).Additionally,GmDFB1 interacts with the PIWI domain of ARGONAUTE 1(GmAGO1)to inhibit the cleavage efficiency on the target genes of s RNAs.The enhanced gene silencing mediated by siRNA and miRNA in the Gmdfb1 mutants leads to the downregulation of their target genes associated with flower development.This study revealed the crucial role of GmDFB1 in regulating floral organ identity in soybean probably by participating in two distinct gene silencing pathways.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
文摘OBJECTIVE To investigate whether aldo-keto reductases(AKRs)can act as a nitrore⁃ductase(NR)and bioactivate aristolochic acidⅠ(AA-Ⅰ)to produce AA-Ⅰ-DNA adducts.METHODS①Human-induced hepatocytes(hiHeps)and human bladder RT4 cells were used as tool cells and treated with AA-Ⅰ0,0.5,1.0 and 2μmol·L^(-1)for 24 h.Cell viability was detected using the CCK-8 method,and the half maximal inhibition concentration(IC_(50))was calculated using the CCK-8 method and the level of DNA adduct production was calculated.②hiHeps and RT4 cells were treated with AKR inhibitor luteotin(0,5,10 and 25μmol·L^(-1))+AA-Ⅰ0.2 and 1.0μmol·L^(-1)for 24 h,respectively,and the levels of DNA adducts were detected by a liquid chromatography-tandem mass spectrometer(LC-MS/MS).③hiHeps cells were incubated with 80 nmol·L^(-1)small interfering RNAs(si-AKRs)for 48 h and treated with AA-Ⅰ1.0μmol·L^(-1)for 24 h.Real-time qualitative PCR(RT-qPCR)method was used to detect the mRNA expression of AKRs gene and LC-MS/MS technology was used to investigate the effect of specific AKR gene knockdown on DNA adduct levels.④500 nmol·L^(-1)human AKR recombinant proteins AKR1A1 and AA-Ⅰwere incubated in vitro under anaerobic conditions and the formation of AA-Ⅰ-DNA adducts was detected.RESULTS①The IC_(50)of AA-Ⅰto hiHeps and RT4 cells was 1.9 and 0.42μmol·L^(-1),respec⁃tively.The level of DNA adduct production of the two cell lines was significantly different(P<0.01).②Luteolin≥5μmol·L^(-1)significantly inhibited the production of AA-Ⅰ-DNA adducts in both cells(P<0.05),and there was a concentration-dependent effect in hiHeps cells(P<0.01,R=0.84).③In the AKR family,the knockdown of AKR1A1 gene up to 80%inhibited the generation of AA-Ⅰ-DNA adducts by 30%-40%.④The AA-Ⅰ-DNA adducts were detected in the incubation of recombinant protein AKR1A1 and AA-Ⅰunder anaerobic conditions in vitro,approximately 1 adduct per 107 nucleotides.CONCLU⁃SION AKR1A1 is involved in AA-Ⅰbioactivation,providing a reference for elucid