岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注...岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注而受到限制,为方法的推广与应用带来巨大困难。此外,模型在不同的地层、岩性等目标应用时,由于不同地质环境中岩石的差异性,其泛化性也受到极大限制。本文针对该问题提出了一种简单线性迭代聚类算法(simple linear iterative cluster,SLIC)与半监督自训练结合的方法,仅依靠6%的人工标注便能够实现岩石图像的自动化分割与组分识别,极大地增强岩石图像自动识别方法在实际应用中的价值。该方法首先使用超像素算法SLIC对岩石图像进行预分割,随后基于分割片的颜色特征进行粗合并,并根据最小外接矩形进行切割;切割下来的岩石组分分割图像作为后续处理的基础数据集,这里仅需要人工标注6%的岩石组分数据;随后,这些数据通过一个改进的半监督自训练方法,以改进的VGG16模型作为主模型、ResNet18模型作为评判模型,不断生成高置信度的伪标签,利用迭代优化调整,将其扩展到整个数据集,最终获得一个具有较高的稳定性、准确性及一致性的组分识别模型。实际数据的测试与分析表明,本文所提出SLIC和半监督自训练结合的方法,对6类岩石组分的识别准确率可达到96%。该方法能够在数据差异不大的条件下,帮助用户基本实现自动化的组分识别。而当数据集产生较大差异时,仅需标注小部分样品即可实现自动组分识别。本方法具有较高的泛化性和可靠性,能够在实际应用提供足够的准确性与便利性。展开更多
Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color...Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).展开更多
为准确提取图像显著区域,提出基于流行排序的前景背景显著性检测算法。首先,采用SLIC(simple linear iterative clustering)方法对经平滑处理的图像进行超像素分割。然后以超像素作为图中节点,采用自适应参数计算节点之间的权重以解决...为准确提取图像显著区域,提出基于流行排序的前景背景显著性检测算法。首先,采用SLIC(simple linear iterative clustering)方法对经平滑处理的图像进行超像素分割。然后以超像素作为图中节点,采用自适应参数计算节点之间的权重以解决因采用固定值导致的图像效果不理想的问题。其次,在计算背景查询节点时,通过阈值剔除边界超像素中不属于背景的像素,以保留合适的查询节点,避免因显著目标位于图像边界而错把非背景像素标记为背景查询节点的问题。最后,因前景优先方法可以有效抑制背景噪声,而背景优先方法对背景噪声抑制不足,但可均匀突出前景目标。因此,采用相乘或者取平均的方式融合前景背景显著图以得到最终的显著图。在公开数据集MSRA、SED2及ECSSD上与其他算法进行实验对比,实验结果证明了算法的有效性。展开更多
文摘岩石薄片图像的分析往往依赖于专业人员在显微镜下观察并给出鉴定结果,不但费时费力,并且受设备影响较大。近些年,针对薄片图像的自动识别方法已经被提出。然而,这些方法大多采用监督学习与深度学习相结合的方式,由于需要大量人工标注而受到限制,为方法的推广与应用带来巨大困难。此外,模型在不同的地层、岩性等目标应用时,由于不同地质环境中岩石的差异性,其泛化性也受到极大限制。本文针对该问题提出了一种简单线性迭代聚类算法(simple linear iterative cluster,SLIC)与半监督自训练结合的方法,仅依靠6%的人工标注便能够实现岩石图像的自动化分割与组分识别,极大地增强岩石图像自动识别方法在实际应用中的价值。该方法首先使用超像素算法SLIC对岩石图像进行预分割,随后基于分割片的颜色特征进行粗合并,并根据最小外接矩形进行切割;切割下来的岩石组分分割图像作为后续处理的基础数据集,这里仅需要人工标注6%的岩石组分数据;随后,这些数据通过一个改进的半监督自训练方法,以改进的VGG16模型作为主模型、ResNet18模型作为评判模型,不断生成高置信度的伪标签,利用迭代优化调整,将其扩展到整个数据集,最终获得一个具有较高的稳定性、准确性及一致性的组分识别模型。实际数据的测试与分析表明,本文所提出SLIC和半监督自训练结合的方法,对6类岩石组分的识别准确率可达到96%。该方法能够在数据差异不大的条件下,帮助用户基本实现自动化的组分识别。而当数据集产生较大差异时,仅需标注小部分样品即可实现自动组分识别。本方法具有较高的泛化性和可靠性,能够在实际应用提供足够的准确性与便利性。
基金This work was supported by National Natural Science Foundation of China(91850202,61775085,11774256)Natural Science Foundation of Guangdong Province(2016A030312010,2020A1515010958)Science and Technology Innovation Commission of Shenzhen(KQTD2017033011044403,ZDSYS201703031605029).
文摘Digital holography has high potentials for future 3D imaging and display technology.We present a method for a dynamic full-color digital holographic 3D display on single digital micro-mirror device(DMD)with full-color,high-speed and high-fidelity characteristics.We combine the square regions of adjacent micro-mirrors into super-pixels that can modulate amplitude and phase independently.Gray images are achieved by amplitude modulation and precise positioning of each color is achieved by phase modulation.The proposed method realizes a full-color imaging based on the three primary colors and achieves measured structural similarity of more than 88%and color similarity of more than 98%,while retaining the high switch speed of 9 kHz,thus achieving dynamic full-color 3D display on charge-coupled device(CCD).
文摘为准确提取图像显著区域,提出基于流行排序的前景背景显著性检测算法。首先,采用SLIC(simple linear iterative clustering)方法对经平滑处理的图像进行超像素分割。然后以超像素作为图中节点,采用自适应参数计算节点之间的权重以解决因采用固定值导致的图像效果不理想的问题。其次,在计算背景查询节点时,通过阈值剔除边界超像素中不属于背景的像素,以保留合适的查询节点,避免因显著目标位于图像边界而错把非背景像素标记为背景查询节点的问题。最后,因前景优先方法可以有效抑制背景噪声,而背景优先方法对背景噪声抑制不足,但可均匀突出前景目标。因此,采用相乘或者取平均的方式融合前景背景显著图以得到最终的显著图。在公开数据集MSRA、SED2及ECSSD上与其他算法进行实验对比,实验结果证明了算法的有效性。