We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, ...In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.展开更多
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
基金the National Natural Science Foundation of China,Grant No 10471064 and 10771103
文摘In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.