期刊文献+

Five Consecutive Positive Odd Numbers None of Which Can Be Expressed as a Sum of Two Prime Powers Ⅱ

Five Consecutive Positive Odd Numbers None of Which Can Be Expressed as a Sum of Two Prime Powers Ⅱ
原文传递
导出
摘要 In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers. In this paper, we find two integers k0, m of 159 decimal digits such that if k ≡ k0 (mod m), then none of five consecutive odd numbers k, k - 2, k - 4, k - 6 and k - 8 can be expressed in the form 2^n ± p^α, where p is a prime and n, α are nonnegative integers.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第11期1883-1890,共8页 数学学报(英文版)
基金 the National Natural Science Foundation of China,Grant No 10471064 and 10771103
关键词 Erdos problems covering systems odd numbers sums of prime powers Erdos problems, covering systems, odd numbers, sums of prime powers
  • 相关文献

参考文献16

  • 1Romanoff, N. P.: Uber einige Satze der additiven Zahlentheorie. Math. Ann., 57, 668-678 (1934) 被引量:1
  • 2Erdos, P.: On integers of the form 2^r +p and some related problems. Summa Brasil. Math., 2, 113-123 (1950) 被引量:1
  • 3Cohen, F., Selfridge, J. L.: Not every number is the sum or difference of two prime powers. Math. Comput., 29, 79-81 (1975) 被引量:1
  • 4Chen, Y. G.: Five consecutive positive odd numbers, none of which can be expressed as a sum of two prime powers. Math. Comput. 74, 1025-1031 (2005) 被引量:1
  • 5Chen, Y. G.: On integers of the form 2^n ± p1^α1 …pr^αr. Proc. Amer. Math. Soc., 128, 1613-1616 (2000) 被引量:1
  • 6Chen, Y. G.: On integers of the form k2^n + 1. Proc. Amer. Math. Soc., 129, 355-361 (2001) 被引量:1
  • 7Chen, Y. G.: On integers of the forms k - 2^n and k2^n + 1. J. Number Theory, 89, 121-125 (2001) 被引量:1
  • 8Chen, Y. G.: On integers of the forms k^r - 2^n and k^r2^n + 1. J. Number Theory, 98, 310-319 (2003) 被引量:1
  • 9Chen, Y. G.: On integers of the forms k ± 2^n and k2^n ± 1. J. Number Theory, 125, 14-25 (2007) 被引量:1
  • 10Chen, Y. G., Sun, X. G.: On Romanoff's constant. J. Number Theory, 106, 275-284 (2004) 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部