In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been de...In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been designed and the numerical calculations have been carried out. Analytical calculations have been made with an excel program which was designed at different profile shift coefficients for a selected mechanism. Analytical calculations of the same mechanism have been verified by using ANSYS 14.5. The results of analytical and numerical solutions have been compared to profile shift coefficients.展开更多
探讨了18Cr Ni Mo7-6渗碳淬火齿轮齿根弯曲应力计算中的若干问题:分析了计算相对齿根表面状况系数Y_(Rrel T)时,R_z的测量方向对结果准确性的影响;研究了实际抗拉强度与参考抗拉强度的偏差对计算结果的影响。利用Solid Works中的Simulat...探讨了18Cr Ni Mo7-6渗碳淬火齿轮齿根弯曲应力计算中的若干问题:分析了计算相对齿根表面状况系数Y_(Rrel T)时,R_z的测量方向对结果准确性的影响;研究了实际抗拉强度与参考抗拉强度的偏差对计算结果的影响。利用Solid Works中的Simulation对齿根弯曲应力进行仿真分析,解析结果与理论计算结果相近,验证了理论计算结果的准确性。展开更多
文摘In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been designed and the numerical calculations have been carried out. Analytical calculations have been made with an excel program which was designed at different profile shift coefficients for a selected mechanism. Analytical calculations of the same mechanism have been verified by using ANSYS 14.5. The results of analytical and numerical solutions have been compared to profile shift coefficients.
文摘探讨了18Cr Ni Mo7-6渗碳淬火齿轮齿根弯曲应力计算中的若干问题:分析了计算相对齿根表面状况系数Y_(Rrel T)时,R_z的测量方向对结果准确性的影响;研究了实际抗拉强度与参考抗拉强度的偏差对计算结果的影响。利用Solid Works中的Simulation对齿根弯曲应力进行仿真分析,解析结果与理论计算结果相近,验证了理论计算结果的准确性。