The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault z...The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of m展开更多
In the Xiaowan arch dam there are massive temperature cracks nearly parallel to the dam axis. Obviously, whether the cracks may spread or not during the water storage process is one of the crucial factors for the safe...In the Xiaowan arch dam there are massive temperature cracks nearly parallel to the dam axis. Obviously, whether the cracks may spread or not during the water storage process is one of the crucial factors for the safety of a dam. In this paper, a new type of crack element, in which the contact component is implicitly included into the concrete component, is proposed to simulate the effects of the existing cracks. The crack element is proved by numerical example to share the merits of both conventional contact elements and joint elements. With a finite element model of the cracked arch dam together with its rock foundation established, the transient displacement and stress fields of the dam are obtained. The complicated rock foundation, the construction process of the arch dam, the massive cracks, the transient temperature field, as well as the water storage process have been taken into consideration in the simulation. In addition to the global model, several sub-models for typical crack tips are also generated with finer elements placed around the tips. Thus, more accurate displacement and stress distribution are obtained by simultaneous sub-model simulation. Based on the calculation of stress intensity factor for crack tips by extension method, the temperature cracks in the Xiaowan arch dam are finally proved to be stable.展开更多
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial...Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.展开更多
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor...To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.90714006 and 40672146)the Deep Exploration Technology and Experimentation Program of China (Grant No.SinoProbe-08-01-03)
文摘The Louzidian low-angle ductile shear detachment zone at the south of Chifeng is a SE-dipping, low-angle normal fault system. It is composed mainly of ductile shear zone, ductile-brittle shear zone and brittle fault zone. The ductile shear zone consists of, from bottom to top, mylonitic rocks, protomylonites and mylonites. Finite strain measurement of feldspar strain markers from those rocks using the Rf /φ method shows that strain intensities (Es) of the mylonite at core of the ductile shear zone (Es=0.65-0.96) are higher than those of the mylonitic rocks close to the granite intrusions (Es=0.59-0.62) and of the protomylonites at top of the ductile shear zone (Es= 0.47-0.70), and the strain types of the protomylonites and mylonties are elongate strain and plane-flattening strain, respectively. The kinematic vorticity values (Wk) estimated by the Polar Mohr diagram and the Rigid Grain Net range from 0.81 to 0.90 with an average of 0.85 for the protomylonites, and from 0.53 to 0.80 with 0.66 on average for the mylonites; Wk values of the extensional crenulation cleavage, i.e., C′, estimated by C′ method range from 0.63 to 0.37 with an average of 0.50. The angles between the maximum principal stress and shearing direction determined using the Maximum effective moment criterion evolved from 61° to 69° and to 75°, and finally normal to shearing direction. The results of strain and kinematic vorticity measurements suggest that high strain corresponds to low kinematic vorticity. Kinematic vorticity measurements show that the Louzidian low-angle ductile shear detachment zone is a result of a combination of simple-dominated general shearing at the early stage and pure-dominated general shearing at the late stage. All these, together with isotope geochronology and regional tectonic background, suggest that the Louzidian ductile shear detachment zone resulted from a combination of crust extension and magma intrusion. The model of simple shear at the early stage and pure shear at the late stage in the formation of m
基金supported by the National Natural Science Foundation of China (Grant No. 51079109)
文摘In the Xiaowan arch dam there are massive temperature cracks nearly parallel to the dam axis. Obviously, whether the cracks may spread or not during the water storage process is one of the crucial factors for the safety of a dam. In this paper, a new type of crack element, in which the contact component is implicitly included into the concrete component, is proposed to simulate the effects of the existing cracks. The crack element is proved by numerical example to share the merits of both conventional contact elements and joint elements. With a finite element model of the cracked arch dam together with its rock foundation established, the transient displacement and stress fields of the dam are obtained. The complicated rock foundation, the construction process of the arch dam, the massive cracks, the transient temperature field, as well as the water storage process have been taken into consideration in the simulation. In addition to the global model, several sub-models for typical crack tips are also generated with finer elements placed around the tips. Thus, more accurate displacement and stress distribution are obtained by simultaneous sub-model simulation. Based on the calculation of stress intensity factor for crack tips by extension method, the temperature cracks in the Xiaowan arch dam are finally proved to be stable.
基金This work was supported by the Scientific Research Project of Anhui Province Universities,China(No.YJS20210388)the National Natural Science Foundation of China(Nos.51974009,52004006,and 52004005)+2 种基金the Major Science and Technology Special Project of Anhui Province,China(No.202203a07020011)the Collaborative Innovation Project of Anhui Province Universities,China(No.GXXT-2021-075)the Huaibei City Science and Technology Major Program(No.Z2020005).
文摘Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity.
基金Projects(51174228,51174088,51204068,51274097)supported by the National Natural Science Foundation of China
文摘To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.