Bacteria form biofilms as an adaptive mechanism in response to environmental changes. Streptococcus mutans is the biofilm-forming bacterium that is primarily associated with dental caries. The expression of important ...Bacteria form biofilms as an adaptive mechanism in response to environmental changes. Streptococcus mutans is the biofilm-forming bacterium that is primarily associated with dental caries. The expression of important genes by bacteria in biofilms is different from that of planktonic cells. Lectins are proteins that bind specifically to carbohydrates and may have important biological activities on bacterial cells, acting as antibacterial and anti-biofilm agents. ConM (Canavalia maritima lectin) is a protein that is able to inhibit the planktonic growth and biofilm formation of S. mutans. In this context, this study aimed to evaluate the effects of ConM and concanavalin A (ConA) on the expression of genes related to virulence and biofilm formation in S. mutans. The results showed that ConM significantly reduced the expression of genes encoding enzymes related to adhesion, formation and regulation of biofilms. On the contrary, ConA did not alter the expression of the genes studied. Because the two lectins have a high degree of similarity, the differences in the actions of ConM and ConA may be explained by the small structural differences in the carbohydrate recognition domain of the lectins.展开更多
Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway and an attractive target for drug design. The crystal structure of Streptococcus mutants purine nucleoside phosphorylase(Smu PNP) has bee...Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway and an attractive target for drug design. The crystal structure of Streptococcus mutants purine nucleoside phosphorylase(Smu PNP) has been solved by molecular replacement at 1.80 resolution and refined to R factors of 19.9%/23.7%(Rcryst/Rfree) . Sequence alignment and structural comparison show that Smu PNP has more similarity with PNPs isolated from human and malarial sources than the bacterial PNPs. The structure complexed with hypoxanthine(HPA) and sulfate ion was solved at 2.24A resolution and refined to R factors of 21.6%/24.1%(Rcryst/Rfree) . It is interesting to note that the resulting electron density indicated the product,HPA,presents in the active site although inosine was included in the crystallization mixture with Smu PNP. Asn233 and Glu191 are the important residues for ligand binding and recognition. Comparison with PNPs from different species gives detailed information about binding of small molecules on the active site,which is important for the studies of enzymatic mechanism and rational design of specific inhibitors for PNPs.展开更多
文摘Bacteria form biofilms as an adaptive mechanism in response to environmental changes. Streptococcus mutans is the biofilm-forming bacterium that is primarily associated with dental caries. The expression of important genes by bacteria in biofilms is different from that of planktonic cells. Lectins are proteins that bind specifically to carbohydrates and may have important biological activities on bacterial cells, acting as antibacterial and anti-biofilm agents. ConM (Canavalia maritima lectin) is a protein that is able to inhibit the planktonic growth and biofilm formation of S. mutans. In this context, this study aimed to evaluate the effects of ConM and concanavalin A (ConA) on the expression of genes related to virulence and biofilm formation in S. mutans. The results showed that ConM significantly reduced the expression of genes encoding enzymes related to adhesion, formation and regulation of biofilms. On the contrary, ConA did not alter the expression of the genes studied. Because the two lectins have a high degree of similarity, the differences in the actions of ConM and ConA may be explained by the small structural differences in the carbohydrate recognition domain of the lectins.
基金Supported by the National Natural Science Foundation of China (30530190 to XDS and 30700115 to NY)
文摘Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway and an attractive target for drug design. The crystal structure of Streptococcus mutants purine nucleoside phosphorylase(Smu PNP) has been solved by molecular replacement at 1.80 resolution and refined to R factors of 19.9%/23.7%(Rcryst/Rfree) . Sequence alignment and structural comparison show that Smu PNP has more similarity with PNPs isolated from human and malarial sources than the bacterial PNPs. The structure complexed with hypoxanthine(HPA) and sulfate ion was solved at 2.24A resolution and refined to R factors of 21.6%/24.1%(Rcryst/Rfree) . It is interesting to note that the resulting electron density indicated the product,HPA,presents in the active site although inosine was included in the crystallization mixture with Smu PNP. Asn233 and Glu191 are the important residues for ligand binding and recognition. Comparison with PNPs from different species gives detailed information about binding of small molecules on the active site,which is important for the studies of enzymatic mechanism and rational design of specific inhibitors for PNPs.