In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Sub...In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas–liquid–solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas–liquid–solid stirred bioreactors under the low solid concentration(no more than 20 wt%).展开更多
Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred...Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.展开更多
基金Supported by the National Natural Science Foundation of China(21476049,21506033)Department of Science and Technology of Fujian Province,China(2014R1004-3,2015J01052,2016H4023 and FG-2016005)
文摘In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas–liquid–solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas–liquid–solid stirred bioreactors under the low solid concentration(no more than 20 wt%).
基金This project is supported by Provincial Science Technology Committee of Jiangsu China(No.BJ99025).
文摘Instantaneous flow field and temperature field of the two-phase fluid are measured by particle image velocimetry (PIV) and steady state method during the state of onflow. A turbulent two-phase fluid model of stirred bioreactor with punched impeller is established by the computational fluid dynamics (CFD), using a rotating coordinate system and sliding mesh to describe the relative motion between impeller and baffles. The simulation and experiment results of flow and temperature field prove their warps are less than 10% and the mathematic model can well simulate the fields, which will also provide the study on optimized-design and scale-up of bioreactors with reference value.