蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的...蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。展开更多
听音乐有助于纾解人们的压力,现已成为大众娱乐的一种重要方式.互联网的发展使人们听音乐变得方便,但同时也使得"信息过载"的问题变得日益严重.尽管各大公司平台纷纷推出了针对音乐的推荐系统来解决这个问题,但现有传统的推...听音乐有助于纾解人们的压力,现已成为大众娱乐的一种重要方式.互联网的发展使人们听音乐变得方便,但同时也使得"信息过载"的问题变得日益严重.尽管各大公司平台纷纷推出了针对音乐的推荐系统来解决这个问题,但现有传统的推荐系统并不能保证用户体验,用户对精准推荐的需求仍很强烈.为解决"信息过载"问题的同时并保证用户体验,本文提出了基于状态转移的奖励值算法.该算法包括对用户自身喜好建模,并利用用户集数据提出的音乐流行度和用户从众度,根据用户喜好、音乐流行度以及状态转移概率定义奖励函数.所提出的算法能个性化地对音乐库数据进行筛选和聚类.在对数据进行处理时,采用Davies-Bouldin指数对声乐特征进行离散化.在模型训练时,采用基于列表距离最小化的计算方法对参数进行选择.通过在Million Song Dataset开源音乐数据集上的实验,表明在算法中加入音乐流行度对推荐效果有一定影响,本文所给出的推荐算法能够提高推荐的效果,说明了本文算法的有效性.展开更多
It is usually difficult to express a family of tri-point transition function (TTF)by a transition matrix as Markov processes with one parameter. In this paper, we define three kinds of connection matrixes on the state...It is usually difficult to express a family of tri-point transition function (TTF)by a transition matrix as Markov processes with one parameter. In this paper, we define three kinds of connection matrixes on the states of standard tri-point transition function (STTF) and study their essential character, give a constructive method on the constantvalue standard tri-point transition function and a general expression of the state-symmetric standard tri-point transition function by a sequence of the transition matrixes of special and simple Markov processes with one parameter.展开更多
文摘蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。
文摘听音乐有助于纾解人们的压力,现已成为大众娱乐的一种重要方式.互联网的发展使人们听音乐变得方便,但同时也使得"信息过载"的问题变得日益严重.尽管各大公司平台纷纷推出了针对音乐的推荐系统来解决这个问题,但现有传统的推荐系统并不能保证用户体验,用户对精准推荐的需求仍很强烈.为解决"信息过载"问题的同时并保证用户体验,本文提出了基于状态转移的奖励值算法.该算法包括对用户自身喜好建模,并利用用户集数据提出的音乐流行度和用户从众度,根据用户喜好、音乐流行度以及状态转移概率定义奖励函数.所提出的算法能个性化地对音乐库数据进行筛选和聚类.在对数据进行处理时,采用Davies-Bouldin指数对声乐特征进行离散化.在模型训练时,采用基于列表距离最小化的计算方法对参数进行选择.通过在Million Song Dataset开源音乐数据集上的实验,表明在算法中加入音乐流行度对推荐效果有一定影响,本文所给出的推荐算法能够提高推荐的效果,说明了本文算法的有效性.
文摘It is usually difficult to express a family of tri-point transition function (TTF)by a transition matrix as Markov processes with one parameter. In this paper, we define three kinds of connection matrixes on the states of standard tri-point transition function (STTF) and study their essential character, give a constructive method on the constantvalue standard tri-point transition function and a general expression of the state-symmetric standard tri-point transition function by a sequence of the transition matrixes of special and simple Markov processes with one parameter.