Magnesium aluminate spinel (MgAl2O4) with high purity has been prepared by using anodized waste slag from aluminum factory and (MgCO3)4Mg(OH)2.5H2O as the main raw materials to discuss the change laws and charac...Magnesium aluminate spinel (MgAl2O4) with high purity has been prepared by using anodized waste slag from aluminum factory and (MgCO3)4Mg(OH)2.5H2O as the main raw materials to discuss the change laws and characteristics of crystalline structure, microstructures and properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM), together with relevant analysis software, were used to characterize the crystal phases and microstructures so as to get MgAl2O4. Results show that when increasing the holding time the amount of MgAl2O4 increases fwstly and then keeps stable, but bulk density and bending strength increase firstly and then decrease. The best holding time is determined to be 3 h because at this time the corresponding MgAl2O4 content is up to 93%, bulk density 3.23 g·cm^3, apparent porosity 4.6% and bending strength 122.4 MPa.展开更多
基金supported by the Natural Science Foundation of Fujian Province (No. T0750005) Science and Technology Developing Foundation of Fuzhou University (No. 2007-XQ-02)
文摘Magnesium aluminate spinel (MgAl2O4) with high purity has been prepared by using anodized waste slag from aluminum factory and (MgCO3)4Mg(OH)2.5H2O as the main raw materials to discuss the change laws and characteristics of crystalline structure, microstructures and properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM), together with relevant analysis software, were used to characterize the crystal phases and microstructures so as to get MgAl2O4. Results show that when increasing the holding time the amount of MgAl2O4 increases fwstly and then keeps stable, but bulk density and bending strength increase firstly and then decrease. The best holding time is determined to be 3 h because at this time the corresponding MgAl2O4 content is up to 93%, bulk density 3.23 g·cm^3, apparent porosity 4.6% and bending strength 122.4 MPa.