Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spec...Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors.展开更多
In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is ver...In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is very effective at improving the classification accuracy for HSIs,capable of capturing a large amount of intrinsic information.However,some existing methods for extracting spectral and spatial features can only generate low-level features and consider limited scales,leading to low classification results,and dense-connection based methods enhance the feature propagation at the cost of high model complexity.This paper presents a two-branch multiscale spectral-spatial feature extraction network(TBMSSN)for HSI classification.We design the mul-tiscale spectral feature extraction(MSEFE)and multiscale spatial feature extraction(MSAFE)modules to improve the feature representation,and a spatial attention mechanism is applied in the MSAFE module to reduce redundant information and enhance the representation of spatial fea-tures at multiscale.Then we densely connect series of MSEFE or MSAFE modules respectively in a two-branch framework to balance efficiency and effectiveness,alleviate the vanishing-gradient problem and strengthen the feature propagation.To evaluate the effectiveness of the proposed method,the experimental results were carried out on bench mark HsI datasets,demonstrating that TBMSSN obtained higher classification accuracy compared with several state-of-the-art methods.展开更多
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, th...The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.展开更多
常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体...常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。展开更多
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
文摘Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors.
基金supported by the National Natural Science Foundation of China(62077038,61672405,62176196 and 62271374)。
文摘In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is very effective at improving the classification accuracy for HSIs,capable of capturing a large amount of intrinsic information.However,some existing methods for extracting spectral and spatial features can only generate low-level features and consider limited scales,leading to low classification results,and dense-connection based methods enhance the feature propagation at the cost of high model complexity.This paper presents a two-branch multiscale spectral-spatial feature extraction network(TBMSSN)for HSI classification.We design the mul-tiscale spectral feature extraction(MSEFE)and multiscale spatial feature extraction(MSAFE)modules to improve the feature representation,and a spatial attention mechanism is applied in the MSAFE module to reduce redundant information and enhance the representation of spatial fea-tures at multiscale.Then we densely connect series of MSEFE or MSAFE modules respectively in a two-branch framework to balance efficiency and effectiveness,alleviate the vanishing-gradient problem and strengthen the feature propagation.To evaluate the effectiveness of the proposed method,the experimental results were carried out on bench mark HsI datasets,demonstrating that TBMSSN obtained higher classification accuracy compared with several state-of-the-art methods.
文摘The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.