期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification 被引量:7
1
作者 Zhaohui XUE Xiangyu NIE 《Journal of Geodesy and Geoinformation Science》 2022年第1期73-90,共18页
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed... Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance. 展开更多
关键词 Hyperspectral Image(HSI) spectral-spatial classification Low-Rank and Sparse Representation(LRSR) Adaptive Neighborhood Regularization(ANR)
下载PDF
基于本征图像分解的高光谱图像空谱联合分类 被引量:6
2
作者 任智伟 吴玲达 《航天返回与遥感》 CSCD 2019年第3期111-120,共10页
高光谱图像分类是许多应用的第一步,也是极其重要的一步。针对目前分类方法存在误分现象,尤其是在地物边缘附近区域,以及现有空谱联合分类方法计算复杂度高的问题,提出一种基于本征图像分解以及导向滤波的高光谱图像空谱联合分类方法:利... 高光谱图像分类是许多应用的第一步,也是极其重要的一步。针对目前分类方法存在误分现象,尤其是在地物边缘附近区域,以及现有空谱联合分类方法计算复杂度高的问题,提出一种基于本征图像分解以及导向滤波的高光谱图像空谱联合分类方法:利用AP聚类进行波段选择,提高计算效率;利用基于局部稀疏约束的本征图像分解方法进行高光谱本征图像分解,获取反射率本征图;利用导向滤波器对初始分类结果进行优化。实验结果表明:文章提出的空谱联合分类方法在分类精度与计算时间方面优势明显。 展开更多
关键词 光谱学 高光谱图像 本征图像分解 局部稀疏约束 空谱联合 导向滤波 遥感技术应用
下载PDF
基于谱域-空域组合核函数的高光谱图像分类技术研究 被引量:6
3
作者 高恒振 万建伟 +1 位作者 王力宝 徐湛 《信号处理》 CSCD 北大核心 2011年第5期648-652,共5页
针对传统高光谱图像分类算法多利用目标的光谱信息,不重视空间信息的问题,本文提出了一种综合利用谱域-空域信息的最小二乘支持向量机分类算法。首先利用主成分分析进行特征提取,然后在保留的主分量图像上用数学形态学得到目标的空域信... 针对传统高光谱图像分类算法多利用目标的光谱信息,不重视空间信息的问题,本文提出了一种综合利用谱域-空域信息的最小二乘支持向量机分类算法。首先利用主成分分析进行特征提取,然后在保留的主分量图像上用数学形态学得到目标的空域信息。并结合光谱域特征,探讨了各种组合策略,构造组合核函数。通过在分类器中引入空域信息,提高了分类准确率。而且采用了最小二乘支持向量机,将标准向量机的二次规划问题转换为求解线性方程组的问题。利用了其训练速度快、效率高的优点。高光谱数据实验表明,本文提出的方法和单独使用谱域或空域信息进行分类相比表现出了一定的优越性,从而适用于较大规模的高光谱图像分类。 展开更多
关键词 主成分分析 谱域-空域 核函数 最小二乘
下载PDF
Spectral-spatial target detection based on data field modeling for hyperspectral data 被引量:4
4
作者 Da LIU Jianxun LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期795-805,共11页
Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spec... Target detection is always an important application in hyperspectral image processing field. In this paper, a spectral-spatial target detection algorithm for hyperspectral data is proposed.The spatial feature and spectral feature were unified based on the data filed theory and extracted by weighted manifold embedding. The novelties of the proposed method lie in two aspects. One is the way in which the spatial features and spectral features were fused as a new feature based on the data field theory, and the other is that local information was introduced to describe the decision boundary and explore the discriminative features for target detection. The extracted features based on data field modeling and manifold embedding techniques were considered for a target detection task.Three standard hyperspectral datasets were considered in the analysis. The effectiveness of the proposed target detection algorithm based on data field theory was proved by the higher detection rates with lower False Alarm Rates(FARs) with respect to those achieved by conventional hyperspectral target detectors. 展开更多
关键词 Data field modeling Feature extraction Hyperspectral data spectral-spatial Target detection
原文传递
A two-branch multiscale spectral-spatial feature extraction network for hyperspectral image classification
5
作者 Aamir Ali Caihong Mu +2 位作者 Zeyu Zhang Jian Zhu Yi Liu 《Journal of Information and Intelligence》 2024年第3期224-235,共12页
In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is ver... In the field of hyperspectral image(HSI)classification in remote sensing,the combination of spectral and spatial features has gained considerable attention.In addition,the multiscale feature extraction approach is very effective at improving the classification accuracy for HSIs,capable of capturing a large amount of intrinsic information.However,some existing methods for extracting spectral and spatial features can only generate low-level features and consider limited scales,leading to low classification results,and dense-connection based methods enhance the feature propagation at the cost of high model complexity.This paper presents a two-branch multiscale spectral-spatial feature extraction network(TBMSSN)for HSI classification.We design the mul-tiscale spectral feature extraction(MSEFE)and multiscale spatial feature extraction(MSAFE)modules to improve the feature representation,and a spatial attention mechanism is applied in the MSAFE module to reduce redundant information and enhance the representation of spatial fea-tures at multiscale.Then we densely connect series of MSEFE or MSAFE modules respectively in a two-branch framework to balance efficiency and effectiveness,alleviate the vanishing-gradient problem and strengthen the feature propagation.To evaluate the effectiveness of the proposed method,the experimental results were carried out on bench mark HsI datasets,demonstrating that TBMSSN obtained higher classification accuracy compared with several state-of-the-art methods. 展开更多
关键词 Hyperspectral image classification Multiscale spectral-spatial information Two-branch architecture
原文传递
Automated Burned Scar Mapping Using Sentinel-2 Imagery
6
作者 Dimitris Stavrakoudis Thomas Katagis +1 位作者 Chara Minakou Ioannis Z. Gitas 《Journal of Geographic Information System》 2020年第3期221-240,共20页
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, th... The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85. 展开更多
关键词 Operational Burned Area Mapping Multiple spectral-spatial Classification (MSSC) Sentinel-2 Automatic Training Patterns Classification Machine Learning
下载PDF
结合水体指数与卷积神经网络的遥感水体提取 被引量:37
7
作者 何海清 杜敬 +1 位作者 陈婷 陈晓勇 《遥感信息》 CSCD 北大核心 2017年第5期82-86,共5页
常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体... 常用多光谱遥感水体提取少有兼顾光谱与空间信息,致使水体提取的可靠性和准确性难以保证。在利用遥感水体光谱特性的同时,融入深度学习算法,提出归一化差分水体指数(normalized difference water index,NDWI)与深度学习联合的遥感水体提取方法。该方法首先选取典型水体样本进行训练,构建深度学习卷积神经网络(convolutional neural networks,CNN)水体识别模型。其次,计算多光谱影像NDWI指数并分割成图斑,以图斑包络矩形构建初始的水体目标子区。最后,构建NDWI指数与CNN水体识别概率的联合估计模型,并以迭代运算实现最优化遥感水体提取。实验验证了该方法的高可靠性与准确性。相比常用方法,水体识别准确率高达94.19%,而错分率仅为5.04%,显著提高了水体提取精度。 展开更多
关键词 深度学习 归一化差分水体指数 卷积神经网络 水体提取 空谱联合
下载PDF
高光谱影像光谱-空间多特征加权概率融合分类 被引量:24
8
作者 张春森 郑艺惟 +1 位作者 黄小兵 崔卫红 《测绘学报》 EI CSCD 北大核心 2015年第8期909-918,共10页
提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occur... 提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取的纹理特征、基于OFC算子建立的多尺度形态学特征以及采用连续最大角凸锥(sequential maximum angle convex cone,SMACC)提取的端元组分特征,组成3组光谱-空间特征;然后利用支持向量机(support vector machine,SVM)对每一组光谱-空间特征进行分类,得到每组特征的概率输出结果;最后,建立多特征加权概率融合模型,应用该模型将不同特征的概率输出结果进行加权融合,得到最终分类结果。为了验证该方法的有效性,利用ROSIS和AVIRIS影像进行试验,总体分类精度分别达到97.65%和96.62%。结果表明本文的方法不但较好地克服了传统基于单一特征高光谱影像分类的局限性,而且其分类效果也优于常规矢量叠加(vector stacking,VS)和概率融合的多特征分类方法,有效地改善了高光谱影像的分类结果。 展开更多
关键词 光谱-空间特征 概率融合 支持向量机 高光谱 分类
下载PDF
SSCDenseNet:一种空-谱卷积稠密网络的高光谱图像分类算法 被引量:19
9
作者 刘启超 肖亮 +1 位作者 刘芳 徐金环 《电子学报》 EI CAS CSCD 北大核心 2020年第4期751-762,共12页
基于深度学习的高光谱遥感图像地物分类是目前研究的热点.但由于其参数规模大以及结构复杂,深度网络通常需要大量训练样本和较长训练时间,如何在小规模样本下建立深度学习监督分类模型是需要解决的关键问题.本文提出了一种小规模样本下... 基于深度学习的高光谱遥感图像地物分类是目前研究的热点.但由于其参数规模大以及结构复杂,深度网络通常需要大量训练样本和较长训练时间,如何在小规模样本下建立深度学习监督分类模型是需要解决的关键问题.本文提出了一种小规模样本下高光谱图像分类的空-谱卷积稠密网络算法,称为SSCDenseNet,其包含三种新颖的架构策略:(1)空-谱分离卷积,即采取光谱维一维卷积和空间维二维卷积的分离卷积结构构成隐层单元,并通过多个隐层单元堆叠构造深度网络;(2)隐层单元中使用批归一化,减少数据协方差漂移及加速网络训练;(3)隐层单元间构建稠密连接,缓解梯度消失问题并实现特征复用.通过Indian Pines、Pavia University与Salinas数据集进行综合测评,表明该方法优于若干最新深度学习方法,特别在小规模样本下具有优异的分类性能. 展开更多
关键词 高光谱图像 监督分类 深度学习 稠密网络 空-谱卷积
下载PDF
基于目标约束与谱空迭代的高光谱图像分类方法 被引量:10
10
作者 于纯妍 赵猛 +2 位作者 宋梅萍 李森 王玉磊 《光学学报》 EI CAS CSCD 北大核心 2018年第6期319-329,共11页
针对复杂背景像元影响高光谱分类精度的问题,将目标检测方法引入地物分类研究,提出了一种基于谱空特征迭代的高光谱图像分类方法,该方法通过将约束能量最小化设计了一种多目标约束的类别分类器(MTCC)。该分类器利用检测原理提取多类目... 针对复杂背景像元影响高光谱分类精度的问题,将目标检测方法引入地物分类研究,提出了一种基于谱空特征迭代的高光谱图像分类方法,该方法通过将约束能量最小化设计了一种多目标约束的类别分类器(MTCC)。该分类器利用检测原理提取多类目标地物,有效地降低了复杂背景数据对分类精度的影响;同时为了解决光谱特征带来的过分类问题,方法中利用反馈式谱空融合方式强化空间增强信息在分类中的作用,以逐步提高分类精度。利用Purdue、Salinas和Pavia数据集进行实验,结果表明,所提方法的平均分类精度分别为98.09%、97.33%和84.68%,精确率分别为96.84%、95.32%和79.13%,与其他方法相比所提方法具有更高的泛化能力,实用性更强。 展开更多
关键词 遥感 高光谱图像分类 谱空特征 迭代 多类别分类器
原文传递
改进高斯过程回归的高光谱空谱联合分类算法 被引量:10
11
作者 陈静 张静 《光学精密工程》 EI CAS CSCD 北大核心 2019年第7期1649-1660,共12页
针对高斯过程回归在高光谱图像分类中计算量较大、分类精度较低等问题,提出一种基于改进高斯过程回归的高光谱空谱联合分类算法。算法以最大方差为指标选取样本的子集缩小高斯过程回归参数求解的计算范围,采用平方根矩阵分解法对新添加... 针对高斯过程回归在高光谱图像分类中计算量较大、分类精度较低等问题,提出一种基于改进高斯过程回归的高光谱空谱联合分类算法。算法以最大方差为指标选取样本的子集缩小高斯过程回归参数求解的计算范围,采用平方根矩阵分解法对新添加样本进行模型结果预测,有效提升运算效率;算法以空间-光谱特征信息为基础,在像元近邻空间中重新定义邻域像元空-谱关联距离,将融入空间近邻信息的空-谱关联距离作为权值来度量邻域像元相似性,加大同类地物归为近邻的概率,从而提高地物分类的精度。在Indian Pines和Pavia University两组高光谱数据集上进行仿真实验,实验结果可知,与其他同类算法横向相比,本文提出的改进算法在总体分类精度、平均分类精度和Kappa系数等评价指标至少提高了2.3%,1.4%和1.07%,与改进前的模型算法纵向对比可知,本文提出的改进算法在取得较高总体分类精度的同时,大幅降低了算法的运行时间。 展开更多
关键词 高光谱图像分类 高斯过程回归 最大方差 平方根矩阵分解 空-谱关联距离
下载PDF
基于边缘保持滤波的高光谱影像光谱-空间联合分类 被引量:10
12
作者 张成坤 韩敏 《自动化学报》 EI CSCD 北大核心 2018年第2期280-288,共9页
针对高光谱遥感影像分类过程中,高维数据引起的"维数灾难"以及空间邻域一致性信息没有得到充分利用的问题,提出一种基于边缘保持滤波(Edge-preserving filtering,EPF)的高光谱影像光谱–空间联合分类算法.该算法首先进行波段... 针对高光谱遥感影像分类过程中,高维数据引起的"维数灾难"以及空间邻域一致性信息没有得到充分利用的问题,提出一种基于边缘保持滤波(Edge-preserving filtering,EPF)的高光谱影像光谱–空间联合分类算法.该算法首先进行波段子集划分和主成分提取,构造新的低维特征集,在保存影像结构信息的前提下降低数据维度;其次利用支持向量机(Support vector machine,SVM)获得低维特征集的初始分类概率图;然后利用原始影像主成分对初始分类概率图进行边缘保持滤波,融合光谱信息和空间信息;最后根据滤波后分类概率图对应像素点值的大小确定每个像素的类别.在Indian Pines和Pavia University两组高光谱数据上进行仿真实验,相同实验条件下,本文算法都获得最高分类精度和最少的时间消耗.仿真结果表明本文算法在高光谱遥感影像分类任务中具有明显的优势. 展开更多
关键词 高光谱 边缘保持滤波 支持向量机 光谱–空间联合分类
下载PDF
3维卷积递归神经网络的高光谱图像分类方法 被引量:9
13
作者 关世豪 杨桄 +1 位作者 李豪 付严宇 《激光技术》 CAS CSCD 北大核心 2020年第4期485-491,共7页
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信... 为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。 展开更多
关键词 光谱学 高光谱图像分类 3维卷积神经网络 双向循环神经网络 空谱联合特征
下载PDF
混合深度CNN联合注意力的高光谱图像分类 被引量:7
14
作者 王燕 吕艳萍 《计算机科学与探索》 CSCD 北大核心 2023年第2期385-395,共11页
深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出... 深度学习中的卷积神经网络(CNN)能充分利用计算机的计算能力,高效地提取遥感图像的特征,取得很好的成果,特别是在高光谱图像分类方面取得了很大的进展。为了在有限的高光谱样本上充分提取光谱和空间特征,提高高光谱图像分类的精度,提出了混合深度卷积联合注意力(HDC-Attention)的模型。首先利用核主成分分析(KPCA)和小批量K均值(MBK-means)对高光谱图像进行组合降维,有效地消除数据冗余并保留主要信息量,使得降维后的数据具有最佳区分度。然后将降维后的数据输入HDC网络进行充分的光谱-空间特征提取。最后利用光谱-空间注意力,重新分配光谱-空间特征的权重,增强有用的空谱特征,抑制无用的特征。提出的模型在三个公开数据集上进行了多次实验,在有限的标记样本下,三个数据集的OA、AA、Kappa分类指标均超过99%。 展开更多
关键词 高光谱图像分类 核主成分分析(KPCA) 卷积神经网络(CNN) 光谱-空间注意力机制 深度学习
下载PDF
基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法 被引量:6
15
作者 焦洪赞 王少宇 彭正洪 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2016年第6期937-943,948,共8页
高空间分辨率的高光谱遥感数据不仅能够获取地物近似连续的光谱曲线,还具有丰富的空间信息.传统的基于单像元的光谱匹配方法无法将这两种特征很好地结合.针对该问题,提出将条件随机场(CRF)模型引入光谱匹配方法.CRF模型通过构造像元邻... 高空间分辨率的高光谱遥感数据不仅能够获取地物近似连续的光谱曲线,还具有丰富的空间信息.传统的基于单像元的光谱匹配方法无法将这两种特征很好地结合.针对该问题,提出将条件随机场(CRF)模型引入光谱匹配方法.CRF模型通过构造像元邻域描述空间信息,解决了基于单像元光谱匹配方法仅考虑光谱信息的不足,实现了聚类过程中光谱和空间信息的融合;然而,传统CRF模型基于欧氏距离和马氏距离等相似性测度,无法适应于高光谱遥感影像的数据特征,因此利用光谱相似性测度改进传统CRF模型的相似性测度准则.实验证明,所提出方法能够有效解决传统光谱匹配方法结果的噪声问题,较好地保留了地物的形状特征,分类精度得到提高. 展开更多
关键词 高光谱 光谱匹配 空谱融合 光谱相似性测度 条件随机场
原文传递
混合卷积神经网络的高光谱图像分类方法 被引量:7
16
作者 刘翠连 陶于祥 +1 位作者 罗小波 李青妍 《激光技术》 CAS CSCD 北大核心 2022年第3期355-361,共7页
为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出... 为了解决高光谱图像领域中,传统卷积神经网络因部分特征信息损失而影响最终地物分类精度的问题,采用一种基于2维和3维的混合卷积神经网络的高光谱图像分类方法,从空间增强、光谱-空间两方面分别进行了特征提取。首先从空间增强角度提出一种3维-2维卷积神经网络混合结构,得到增强后的空间信息;其次从光谱-空间角度利用3维卷积网络结构,得到光谱-空间的综合可分性信息;最后将所得信息进行特征融合并分类。用该方法在两个数据集上进行了实验并与其它方法进行了对比。结果表明,该方法在Indian Pines与Pavia University数据集上分别取得了99.36%和99.95%的分类精度,其分类精度和kappa系数都优于其它方法。该方法对高光谱图像的分类表现出竞争优势。 展开更多
关键词 遥感 高光谱图像分类 混合卷积神经网络 光谱-空间特征 特征提取
下载PDF
综合聚类和上下文特征的高光谱影像分类 被引量:7
17
作者 鲍蕊 薛朝辉 +2 位作者 张像源 苏红军 杜培军 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2017年第7期890-896,共7页
常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法... 常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法(最小噪声分离、独立成分分析和主成分分析)下,使用不同聚类方法(k-均值、迭代自组织分析算法和模糊c-均值算法)借助隐马尔可夫随机场获取优化的分割图;然后,采用4连通区域标记法对分割区域标记生成图像对象,并根据支持向量机的逐像素分类结果采用多数投票法对图像对象进行分类;最后,借助凹槽窗口邻域滤波技术改进分类结果,削弱"椒盐"现象。该方法综合了监督分类和非监督分类的优势,通过聚类引入地物空间相关性信息,通过隐马尔可夫随机场引入上下文特征,较好地弥补了单纯基于光谱信息分类的不足。 展开更多
关键词 聚类 隐马尔可夫随机场 支持向量机 高光谱影像 光谱-空间分类 多数投票
原文传递
一种利用空谱联合特征的高光谱图像分类方法 被引量:6
18
作者 付青 郭晨 罗文浪 《激光与光电子学进展》 CSCD 北大核心 2020年第20期372-378,共7页
高光谱图像分类已被公认为是高光谱数据处理的基础性和挑战性任务,丰富的光谱信息和空间信息为有效描述和识别地表物质提供了契机。卷积神经网络(CNN)中的参数较多,为了避免过拟合问题,需要大量的训练样本。Log-Gabor滤波器可以有效地... 高光谱图像分类已被公认为是高光谱数据处理的基础性和挑战性任务,丰富的光谱信息和空间信息为有效描述和识别地表物质提供了契机。卷积神经网络(CNN)中的参数较多,为了避免过拟合问题,需要大量的训练样本。Log-Gabor滤波器可以有效地提取包括边缘和纹理在内的空间信息,降低CNN特征提取的难度。为了充分利用CNN和Log-Gabor滤波器的优点,提出了一种将Log-Gabor滤波器和CNN相结合的高光谱图像分类方法,并利用两个真实的高光谱图像数据集进行了对比实验。实验结果表明,所提方法比传统的支持向量机和CNN方法具有更高的分类精度。 展开更多
关键词 遥感 空谱联合特征 高光谱图像 卷积神经网络 LOG-GABOR滤波器 分类
原文传递
基于空谱联合特征的壁画稀疏多光谱图像颜料分类方法 被引量:6
19
作者 蔚道权 王慧琴 +2 位作者 王可 王展 甄刚 《光子学报》 EI CAS CSCD 北大核心 2022年第4期187-200,共14页
由于受到现场条件和保护要求限制,对壁画进行光谱成像数据采集时需要快速完成,利用稀疏通道成像能够提高数据采集的效率,但其像元颜料光谱反射率曲线呈现非线性,影响壁画多光谱图像颜料分类精度。针对该问题,提出了基于空谱联合特征的... 由于受到现场条件和保护要求限制,对壁画进行光谱成像数据采集时需要快速完成,利用稀疏通道成像能够提高数据采集的效率,但其像元颜料光谱反射率曲线呈现非线性,影响壁画多光谱图像颜料分类精度。针对该问题,提出了基于空谱联合特征的壁画稀疏多光谱图像颜料分类方法,采用长短期记忆神经网络中的双曲正切激活函数提取非线性光谱特征,减小对分类精度的影响;针对多光谱成像空间分辨率较高导致相邻像元相关性较强的问题,利用卷积神经网络中线性整流函数把特征图映射到非线性空间,提高模型非线性特征的表达能力;最后使用多尺度融合策略将空间特征和光谱特征相加,消除光谱非线性和空间相关性的问题对分类结果的影响。实验结果表明,OA和Kappa系数分别达到了97%和0.97以上,有效提高了壁画稀疏多光谱图像的颜料分类精度。 展开更多
关键词 壁画多光谱图像 颜料分类 空谱联合 卷积神经网络 长短期记忆神经网络
下载PDF
基于非局部低秩和全变分的多光谱图像去噪算法
20
作者 孔祥阳 张娇 +1 位作者 张诗静 徐保根 《井冈山大学学报(自然科学版)》 2024年第3期79-85,共7页
在成像过程中,多光谱图像(MSI)通常会受到高斯噪声的污染,从而影响MSI的后续应用。为了去除高斯噪声,通过考虑沿光谱的全局相关性(GCS)和跨空间的非局部自相似性(NSS),提出了一种新的基于张量的去噪方法。为了同时捕获非局部相似性和光... 在成像过程中,多光谱图像(MSI)通常会受到高斯噪声的污染,从而影响MSI的后续应用。为了去除高斯噪声,通过考虑沿光谱的全局相关性(GCS)和跨空间的非局部自相似性(NSS),提出了一种新的基于张量的去噪方法。为了同时捕获非局部相似性和光谱相关性,MSI首先被分割成重叠的三维全波段块,通过聚类算法将相似的块进行分组。再将每个三维全波段块展开成矩阵,然后把组内的相似块级联成三阶张量,利用张量核范数对该低秩张量进行正则化约束。为了避免这一操作产生的振铃效应,利用三维加权总变分探索光谱—空间平滑性。仿真实验表明:所提算法可以有效地利用内在的GCS和NSS知识,能够从退化的MSI中恢复出更加精细的信息,在综合的量化性能指标下优于对比方法。 展开更多
关键词 多光谱图像 非局部相似性 光谱相关性 高斯噪声 光谱-空间平滑性
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部