期刊文献+

基于本征图像分解的高光谱图像空谱联合分类 被引量:6

Spectral-spatial Classification for Hyperspectral Imagery Based on Intrinsic Image Decomposition
下载PDF
导出
摘要 高光谱图像分类是许多应用的第一步,也是极其重要的一步。针对目前分类方法存在误分现象,尤其是在地物边缘附近区域,以及现有空谱联合分类方法计算复杂度高的问题,提出一种基于本征图像分解以及导向滤波的高光谱图像空谱联合分类方法:利用AP聚类进行波段选择,提高计算效率;利用基于局部稀疏约束的本征图像分解方法进行高光谱本征图像分解,获取反射率本征图;利用导向滤波器对初始分类结果进行优化。实验结果表明:文章提出的空谱联合分类方法在分类精度与计算时间方面优势明显。 As a kind of high-resolution remote sensing, hyperspectral remote sensing has a wide range of application prospects because it can provide rich spectral information. Hyperspectral image classification is the first and most important step in many applications. There is a misclassification phenomenon in the current classification method, especially in the vicinity of the edge of the object, and the existing classification method with spatial-spectrum combination has high computational complexity. A spectral-spatial classification method for hyperspectral imagery based on intrinsic image decomposition and guided filtering is proposed. Affinity propagation (AP) clustering is used for band selection to improve computational efficiency. The method of hyperspectral intrinsic image decomposition based on local sparseness is performed to obtain the reflectance intrinsic image. The guided filter is utilized to optimize the initial classification results. The experimental results show that the proposed method has obvious advantages in classification accuracy and computation time.
作者 任智伟 吴玲达 REN Zhiwei;WU Lingda(Jiuquan Satellite Launch Center, Jiuquan 732750, China;Space Engineering University, Beijing 101416, China)
出处 《航天返回与遥感》 CSCD 2019年第3期111-120,共10页 Spacecraft Recovery & Remote Sensing
关键词 光谱学 高光谱图像 本征图像分解 局部稀疏约束 空谱联合 导向滤波 遥感技术应用 spectroscopy hyperspectral image intrinsic image decomposition local sparseness spectral-spatial guided filter remote sensing technology application
  • 相关文献

参考文献9

二级参考文献76

共引文献94

同被引文献56

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部