The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific f...The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.展开更多
The space partitioning algorithm based on the rounding and addressing operations has been proved to be an efficient space partitioning algorithm with the potential for real-time calculation.An improvement on this kind...The space partitioning algorithm based on the rounding and addressing operations has been proved to be an efficient space partitioning algorithm with the potential for real-time calculation.An improvement on this kind of space partitioning algorithms for solving complex 3D models is presented.Numerical examples show that the efficiency of the improved algorithm is better than that of the original method.When the size of most target elements is smaller than the size of spatial grids,the efficiency of the improved method can be more than four times of that of the original method.An adaptive method of space partitioning based on the improved algorithm is developed by taking the surface element density or the curvature as the threshold for deep partitioning and conducting the deep partitioning using the octree method.A computer program implementation for applying the method in some typical applications is discussed,and the performance in terms of the efficiency,reliability,and resource use is evaluated.Application testing shows that the results of the adaptive spacing partitioning are more convenient for the follow-up use than that of the basic uniform space partitioning.Furthermore,when it is used to calculate the electromagnetic scattering of complex targets by the ray tracing(RT)method,the adaptive space partitioning algorithm can reduce the calculation time of the RT process by more than 40%compared with the uniform space segmentation algorithm.展开更多
The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusse...The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusses what factors have to be considered to design an effective user interface for color selec- tion. It also presents a method which shows how to represent 3D color spaces according to the psychol- ogy of color perception. Two examples of user interface for color selection are given. One is based on the CLELUV uniform color space, the other is based on RGB-rotated color model.展开更多
文摘The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.
基金This work was supported by the National Natural Science Foundation of China(61601015,91538204).
文摘The space partitioning algorithm based on the rounding and addressing operations has been proved to be an efficient space partitioning algorithm with the potential for real-time calculation.An improvement on this kind of space partitioning algorithms for solving complex 3D models is presented.Numerical examples show that the efficiency of the improved algorithm is better than that of the original method.When the size of most target elements is smaller than the size of spatial grids,the efficiency of the improved method can be more than four times of that of the original method.An adaptive method of space partitioning based on the improved algorithm is developed by taking the surface element density or the curvature as the threshold for deep partitioning and conducting the deep partitioning using the octree method.A computer program implementation for applying the method in some typical applications is discussed,and the performance in terms of the efficiency,reliability,and resource use is evaluated.Application testing shows that the results of the adaptive spacing partitioning are more convenient for the follow-up use than that of the basic uniform space partitioning.Furthermore,when it is used to calculate the electromagnetic scattering of complex targets by the ray tracing(RT)method,the adaptive space partitioning algorithm can reduce the calculation time of the RT process by more than 40%compared with the uniform space segmentation algorithm.
文摘The user-computer interface for color selection is of great significance for the use of colors in computer graphics, particularly in some fields where the used colors have to be selected carefully. This paper discusses what factors have to be considered to design an effective user interface for color selec- tion. It also presents a method which shows how to represent 3D color spaces according to the psychol- ogy of color perception. Two examples of user interface for color selection are given. One is based on the CLELUV uniform color space, the other is based on RGB-rotated color model.