The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The stee...The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.展开更多
In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this met...In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this method to fractional KdV-type and fractional Telegraph equations and obtain the tangent and cotangent functions solutions of these fractional equations for the first time.展开更多
The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for ...The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.12171148 and 11771138)the Construct Program of the Key Discipline in Hunan Province.Wei Liu was supported by National Natural Science Foundation of China(Grant Nos.12101252 and 11971007)+2 种基金supported by National Natural Science Foundation of China(Grant No.11901185)National Key Research and Development Program of China(Grant No.2021YFA1001300)the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.
文摘In this paper, we firstly give a counterexample to indicate that the chain rule is lack of accuracy. After that, we put forward the fractional Riccati expansion method. No need to use the chain rule, we apply this method to fractional KdV-type and fractional Telegraph equations and obtain the tangent and cotangent functions solutions of these fractional equations for the first time.
基金the National-Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Research and Development Program of China (2004 AA616040).
文摘The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.
基金Supported by the National Natural Science Foundation of China (No.20476059, No.20276037) and 863 Hi-Technology Re-search and Development Program of China (2004 AA616040).