The development of high-performance solid-state electrolyte(SSE)films is critical to the practical application of all-solid-state Li metal batteries(ASSLMBs).However,developing high-performance free-standing electroly...The development of high-performance solid-state electrolyte(SSE)films is critical to the practical application of all-solid-state Li metal batteries(ASSLMBs).However,developing high-performance free-standing electrolyte films remains a challenging task.In this work,we demonstrate a novel scalable solvent-free process for fabricating high ceramic content composite solid-state electrolyte(HCCSE)films.Specifically speaking,a mixture of ceramic and polymer is dry mixed,fibered,and calendered into a free-standing porous ceramic film,on which polymer precursor is coated and polymerized to bridge the inorganic ceramic particles,resulting in a flexible HCCSE film with a ceramic content of up to 80 wt.%.High ceramic content not only leads to high ionic conductivity but also brings good mechanical properties;while the organic phase enables electrode|electrolyte interfacial stability.When Li_(10)GeP_(2)S_(12)(LGPS)and polymeric ionic liquid-based solid polymer electrolytes(PIL-SPEs)were used as the inorganic and organic phases,respectively,the room temperature ionic conductivity of the resulted HCCSE reaches 0.91 mS·cm−1.Based on this HCCSE,Li||Li symmetric battery cycled stably for more than 2,400 h with ultra-low overpotential,and ASSLMBs with different cathodes(LiFePO4 and sulfurized polyacrylonitrile(PAN-S))present small polarization and decent cyclability at room temperature.This work provides a novel scalable solvent-free strategy for preparing high-performance freestanding composite solid-state electrolyte(CSE)film for room temperature ASSLMBs.展开更多
Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0....Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0.5 La 0.5 )TiO3 (LLTO) thin film electrolytes for thin film microbattery were prepared onto Pt/Si substrates using magnetron sputtering. As-deposited LLTO thin films showed amorphous-like phases and when deposition temperature increases the ionic conductivity raises accordingly. The ionic conductivity of LLTO thin film reaches 8.7×10 -6 S/cm when the deposition temperature is 400℃, which shows that the LLTO thin films deposited by magnetron sputtering are suitable for application as an electrolyte for thin film microbattery.展开更多
Thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 was fabricated using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and electrolyte. Li1.3Al0.3Ti1.7(PO4)3 sintered pellet was prepared b...Thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 was fabricated using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and electrolyte. Li1.3Al0.3Ti1.7(PO4)3 sintered pellet was prepared by sol-gel technique, and the thin-film battery was heat-treated by rapid thermal annealing. Phase identification, morphology and electrochemical properties of the components and thin-film battery were investigated by X-ray diffractometry, scanning electron microscopy, electrochemical impedance spectroscopy and galvanostatic charge-discharge experiments. The results show that Li1.3Al0.3Ti1.7(PO4)3 possesses a electrochemical window of 2.4 V and an ionic conductivity of 1.2 ×10-4 S/cm. With Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and solid electrolyte, the fabricated thin-film battery with an open circuit voltage of 1.2V can be easily cycled.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21733012 and 22179143)the National Key R&D Program of China(No.2021YFB3800300).
文摘The development of high-performance solid-state electrolyte(SSE)films is critical to the practical application of all-solid-state Li metal batteries(ASSLMBs).However,developing high-performance free-standing electrolyte films remains a challenging task.In this work,we demonstrate a novel scalable solvent-free process for fabricating high ceramic content composite solid-state electrolyte(HCCSE)films.Specifically speaking,a mixture of ceramic and polymer is dry mixed,fibered,and calendered into a free-standing porous ceramic film,on which polymer precursor is coated and polymerized to bridge the inorganic ceramic particles,resulting in a flexible HCCSE film with a ceramic content of up to 80 wt.%.High ceramic content not only leads to high ionic conductivity but also brings good mechanical properties;while the organic phase enables electrode|electrolyte interfacial stability.When Li_(10)GeP_(2)S_(12)(LGPS)and polymeric ionic liquid-based solid polymer electrolytes(PIL-SPEs)were used as the inorganic and organic phases,respectively,the room temperature ionic conductivity of the resulted HCCSE reaches 0.91 mS·cm−1.Based on this HCCSE,Li||Li symmetric battery cycled stably for more than 2,400 h with ultra-low overpotential,and ASSLMBs with different cathodes(LiFePO4 and sulfurized polyacrylonitrile(PAN-S))present small polarization and decent cyclability at room temperature.This work provides a novel scalable solvent-free strategy for preparing high-performance freestanding composite solid-state electrolyte(CSE)film for room temperature ASSLMBs.
文摘Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li 0.5 La 0.5 )TiO3 (LLTO) thin film electrolytes for thin film microbattery were prepared onto Pt/Si substrates using magnetron sputtering. As-deposited LLTO thin films showed amorphous-like phases and when deposition temperature increases the ionic conductivity raises accordingly. The ionic conductivity of LLTO thin film reaches 8.7×10 -6 S/cm when the deposition temperature is 400℃, which shows that the LLTO thin films deposited by magnetron sputtering are suitable for application as an electrolyte for thin film microbattery.
基金Projects(03JJY6005 04JJ4038) supported by the Natural Science Foundation of Hunan Province, China Project(05C140) supported by the Education Office of Hunan Province, China
文摘Thin-film lithium-ion battery of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 was fabricated using Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and electrolyte. Li1.3Al0.3Ti1.7(PO4)3 sintered pellet was prepared by sol-gel technique, and the thin-film battery was heat-treated by rapid thermal annealing. Phase identification, morphology and electrochemical properties of the components and thin-film battery were investigated by X-ray diffractometry, scanning electron microscopy, electrochemical impedance spectroscopy and galvanostatic charge-discharge experiments. The results show that Li1.3Al0.3Ti1.7(PO4)3 possesses a electrochemical window of 2.4 V and an ionic conductivity of 1.2 ×10-4 S/cm. With Li1.3Al0.3Ti1.7(PO4)3 sintered pellet as both substrate and solid electrolyte, the fabricated thin-film battery with an open circuit voltage of 1.2V can be easily cycled.