通过对三七免耕种植定位研究,找出了三七根腐病高发期与土壤微生物类群变化特征的差异,鉴定出了主要病原微生物类群。结果表明:三七根腐病的发生,除已报道的细菌中的假单胞细菌有关外,还与霉菌、放线菌及厌氧生长菌有密切关联,这3类菌...通过对三七免耕种植定位研究,找出了三七根腐病高发期与土壤微生物类群变化特征的差异,鉴定出了主要病原微生物类群。结果表明:三七根腐病的发生,除已报道的细菌中的假单胞细菌有关外,还与霉菌、放线菌及厌氧生长菌有密切关联,这3类菌群在不同季节存活量的高峰期与三七病害高发期相吻合,并且根腐病株土壤中的霉菌、放线菌及厌氧菌数高于健康植株土壤,分别增加3.89 E 4.cfu/g,0.94 E 4.cfu/g,85.10 E 6.cfu/g,说明这3种细菌也是导致三七根腐病的主要病原菌。展开更多
A pot experiment was conducted to study the plant growth and fruit yields of cucumber (Cucumis sativus L.) on a greenhouse soil with or without inoculation of arbuscular mycorrhizal fungi (AMFs) and Fusarium oxysp...A pot experiment was conducted to study the plant growth and fruit yields of cucumber (Cucumis sativus L.) on a greenhouse soil with or without inoculation of arbuscular mycorrhizal fungi (AMFs) and Fusarium oxysporum f. sp, cucumerinum under unsterilized conditions. Two AMF inocula were tested: only one AMF strain Glomus caledonium 90036 and an AMF consortium mainly consisting of Glornus spp. and Acaulospora spp. There were four treatments including no inoculation (control), inoculation with F. oxysporum but without mycorrhizae (FO), inoculation with F. oxysporum and G. caledonium (FO+M1), and inoculation with F. oxysporum and the AMF consortium (FO+M2). Cucumber plants were harvested at weeks 3 and 9 after transplanting. Compared with the control, the FO treatment without AMF inoculation had less biomass both at weeks 3 and 9 (P 〈 0.05) and had higher incidence of Fusarium wilt and produced no cucumber fruit at week 9. Both FO+M1 and FO+M2 treatments had higher mycorrhizal colonization than the treatments which received no AMF inoculation at week 3 (P 〈 0.05), but only the FO+M2 treatment elevated plant biomass, decreased the incidence of Fusarium wilt, and improved cucumber yields to the same level as the control at week 9. The results indicated that the AMF consortium could suppress Fusarium wilt of cucumber and, therefore, showed potential as a biological control agent in greenhouse agroecosystems.展开更多
Soil fungi play a very important role in the soil ecological environment. In agricultural production, long-term monoculture and continuous cropping lead to changes in fungal community diversity. However, the effects o...Soil fungi play a very important role in the soil ecological environment. In agricultural production, long-term monoculture and continuous cropping lead to changes in fungal community diversity. However, the effects of long-term monoculture and continuous cropping on strawberry plant health and fungal community diversity have not been elucidated. In this study, using high-throughput sequencing(HTS), we compared the fungal community and diversity of strawberry rhizosphere soil after various durations of continuous cropping(0, 2, 4, 6, 8, 10 and 12 years). The results showed that soil fungal diversity increased with consecutive cropping years. Specifically, the soil-borne disease pathogens Fusarium and Guehomyces were significantly increased after strawberry continuous cropping, and the abundance of nematicidal(Arthrobotrys) fungi decreased from the fourth year of continuous cropping. The results of correlation analysis suggest that these three genera might be key fungi that contribute to the changes in soil properties that occur during continuous cropping. In addition, physicochemical property analysis showed that the soil nutrient content began to decline after the fourth year of continuous cropping. Spearman's correlation analysis showed that soil pH, available potassium(AK) and ammonium nitrogen(NH_4^+-N) were the most important edaphic factors leading to contrasting beneficial and pathogenic associations across consecutive strawberry cropping systems.展开更多
文摘通过对三七免耕种植定位研究,找出了三七根腐病高发期与土壤微生物类群变化特征的差异,鉴定出了主要病原微生物类群。结果表明:三七根腐病的发生,除已报道的细菌中的假单胞细菌有关外,还与霉菌、放线菌及厌氧生长菌有密切关联,这3类菌群在不同季节存活量的高峰期与三七病害高发期相吻合,并且根腐病株土壤中的霉菌、放线菌及厌氧菌数高于健康植株土壤,分别增加3.89 E 4.cfu/g,0.94 E 4.cfu/g,85.10 E 6.cfu/g,说明这3种细菌也是导致三七根腐病的主要病原菌。
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.ISSASIP0703,Kzcx2-yw-408,and Kzcx3-sw-439)
文摘A pot experiment was conducted to study the plant growth and fruit yields of cucumber (Cucumis sativus L.) on a greenhouse soil with or without inoculation of arbuscular mycorrhizal fungi (AMFs) and Fusarium oxysporum f. sp, cucumerinum under unsterilized conditions. Two AMF inocula were tested: only one AMF strain Glomus caledonium 90036 and an AMF consortium mainly consisting of Glornus spp. and Acaulospora spp. There were four treatments including no inoculation (control), inoculation with F. oxysporum but without mycorrhizae (FO), inoculation with F. oxysporum and G. caledonium (FO+M1), and inoculation with F. oxysporum and the AMF consortium (FO+M2). Cucumber plants were harvested at weeks 3 and 9 after transplanting. Compared with the control, the FO treatment without AMF inoculation had less biomass both at weeks 3 and 9 (P 〈 0.05) and had higher incidence of Fusarium wilt and produced no cucumber fruit at week 9. Both FO+M1 and FO+M2 treatments had higher mycorrhizal colonization than the treatments which received no AMF inoculation at week 3 (P 〈 0.05), but only the FO+M2 treatment elevated plant biomass, decreased the incidence of Fusarium wilt, and improved cucumber yields to the same level as the control at week 9. The results indicated that the AMF consortium could suppress Fusarium wilt of cucumber and, therefore, showed potential as a biological control agent in greenhouse agroecosystems.
基金funded by the National Science and Technology Support Program of China (2014BAD16B07)
文摘Soil fungi play a very important role in the soil ecological environment. In agricultural production, long-term monoculture and continuous cropping lead to changes in fungal community diversity. However, the effects of long-term monoculture and continuous cropping on strawberry plant health and fungal community diversity have not been elucidated. In this study, using high-throughput sequencing(HTS), we compared the fungal community and diversity of strawberry rhizosphere soil after various durations of continuous cropping(0, 2, 4, 6, 8, 10 and 12 years). The results showed that soil fungal diversity increased with consecutive cropping years. Specifically, the soil-borne disease pathogens Fusarium and Guehomyces were significantly increased after strawberry continuous cropping, and the abundance of nematicidal(Arthrobotrys) fungi decreased from the fourth year of continuous cropping. The results of correlation analysis suggest that these three genera might be key fungi that contribute to the changes in soil properties that occur during continuous cropping. In addition, physicochemical property analysis showed that the soil nutrient content began to decline after the fourth year of continuous cropping. Spearman's correlation analysis showed that soil pH, available potassium(AK) and ammonium nitrogen(NH_4^+-N) were the most important edaphic factors leading to contrasting beneficial and pathogenic associations across consecutive strawberry cropping systems.