In gas-liquid mass transfer processes,Marangoni convection may occur due to the surface tension gradient produced by mass transfer near the interface.With a falling soap film tunnel and the Schlieren optical method,th...In gas-liquid mass transfer processes,Marangoni convection may occur due to the surface tension gradient produced by mass transfer near the interface.With a falling soap film tunnel and the Schlieren optical method,the Marangoni convection patterns along the film surface were observed directly in the desorption process of acetone from the falling soap film.The Schlieren images showed the regular roll convection in the thin falling soap film during the acetone desorption.The hydraulic characteristics were determined experimentally by measuring the variation of acetone concentration in the film and the surface tension of the soap liquid.The results show that the acetone concentration gradient vertical to the falling direction is very small because the thickness of the soap film is in the order of 10-6 m.The variation of acetone concentration along the falling film is large,so there is a significant surface tension gradient,resulting in the Marangoni roll convection.The experimental results and a qualitative analysis may be helpful to understand the mechanism of Marangoni convection near the interface in the mass transfer.展开更多
Experiments of a flexible filament in the wake of a cylinder and in free stream were conducted in a vertical soap film tunnel. The experiments distinctly visualized the movement of the filament. Based on the experimen...Experiments of a flexible filament in the wake of a cylinder and in free stream were conducted in a vertical soap film tunnel. The experiments distinctly visualized the movement of the filament. Based on the experimental kinematic results, a 2-d panel method was used to calculate the forces acting on the filament. The experiment and numerical results revealed that different from that in free stream, the filament in Karman vortex street flapped at the same frequency as the vortex street, and with smaller amplitude and larger curvature. The filament suffered an evident thrust in Karman vortex street, while a drag appeared in the case of free stream. The dependence of the drag coefficient on the phase relation between the movement of the filament and the Karman vortex street was also studied.展开更多
文摘In gas-liquid mass transfer processes,Marangoni convection may occur due to the surface tension gradient produced by mass transfer near the interface.With a falling soap film tunnel and the Schlieren optical method,the Marangoni convection patterns along the film surface were observed directly in the desorption process of acetone from the falling soap film.The Schlieren images showed the regular roll convection in the thin falling soap film during the acetone desorption.The hydraulic characteristics were determined experimentally by measuring the variation of acetone concentration in the film and the surface tension of the soap liquid.The results show that the acetone concentration gradient vertical to the falling direction is very small because the thickness of the soap film is in the order of 10-6 m.The variation of acetone concentration along the falling film is large,so there is a significant surface tension gradient,resulting in the Marangoni roll convection.The experimental results and a qualitative analysis may be helpful to understand the mechanism of Marangoni convection near the interface in the mass transfer.
基金Supported by the National Natural Science Foundation of China (Grant No. 10832010)Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-YW-L05)
文摘Experiments of a flexible filament in the wake of a cylinder and in free stream were conducted in a vertical soap film tunnel. The experiments distinctly visualized the movement of the filament. Based on the experimental kinematic results, a 2-d panel method was used to calculate the forces acting on the filament. The experiment and numerical results revealed that different from that in free stream, the filament in Karman vortex street flapped at the same frequency as the vortex street, and with smaller amplitude and larger curvature. The filament suffered an evident thrust in Karman vortex street, while a drag appeared in the case of free stream. The dependence of the drag coefficient on the phase relation between the movement of the filament and the Karman vortex street was also studied.