A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual ...A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.展开更多
The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated float...The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated floating plates in the tank can remarkably mitigate violent resonant sloshing responses compared with the clean tank,especially when the external excitation frequency is in the vicinity of the first-order resonant frequency.Next,the parametric studies based on different filling rates and external excitation amplitudes are performed for the first-order resonant frequencies.The presence of dual perforated floating plates seldom shifts the sloshing natural frequencies.Further,dual perforated floating plates change the sloshing modes from the standing-wave mode in the clean tank to the Utube mode,which can arise from the sloshing reduction to some extent.展开更多
The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for th...The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51679079 and 51209080)the Fundamental Research Funds for the Central Universities(No.2014B17314)+3 种基金the Program for Excellent Innovative Talents of Hohai Universitythe Open Fund of State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University(HESS-1703)the Open Fund Program of Key Laboratory of Water & Sediment Science and Water Hazard Prevention,Changsha University of Science & Technology(2015SS03)the 111 Project(B12032)
文摘A finite difference model for solving Navier Stokes viscous liquid sloshing-wave interaction with baffles in a tank. equations with turbulence taken into accotmt is used to investigate The volume-of-fluid and virtual boundary force methods are employed to simulate free surface flow interaction with structures. A liquid sloshing experimental apparatus was established to evaluate the accuracy of the proposed model, as well as to study nonlinear sloshing in a prismatic tank with the baffles. Damping effects of sloshing in a rectangular tank with bottom-mounted vertical baffles and vertical baffles touching the free surface are studied numerically and experimentally. Good agreement is obtained between the present numerical results and experimental data. The numerical results match well with the current experimental data for strong nonlinear sloshing with large free surface slopes. The reduction in sloshing-wave elevation and impact pressure induced by the bottom-mounted vertical baffle and the vertical baffle touching the free surface is estimated by varying the external excitation frequency and the location and height of the vertical baffle under horizontal excitation.
基金This study is financially supported by Hainan Provincial Natural Science Foundation of China(Grant No.519MS026)Scientific Research Foundation of Hainan University(Grant No.KYQD(ZR)1878).
文摘The performance of dual perforated floating plates in a rectangular tank is investigated based on the model tests under different external excitations for different filling rates.It is found that dual perforated floating plates in the tank can remarkably mitigate violent resonant sloshing responses compared with the clean tank,especially when the external excitation frequency is in the vicinity of the first-order resonant frequency.Next,the parametric studies based on different filling rates and external excitation amplitudes are performed for the first-order resonant frequencies.The presence of dual perforated floating plates seldom shifts the sloshing natural frequencies.Further,dual perforated floating plates change the sloshing modes from the standing-wave mode in the clean tank to the Utube mode,which can arise from the sloshing reduction to some extent.
文摘The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.