摘要
The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.
The coupling oscillation of a liquid in a cylindrical tank with an elastic slosh baffle is investigated. Free surface conditions are considered in the study. The complexity of the coupled boundary-value problem for the liquid and elastic damping spacer results in significant analytical difficulties. Two different velocity potential functions are respectively used in the liquid domain above, or below the damping spacer. A coupled frequency equation is obtained by using the pair of velocity potential functions. The numerical and theoretical analysis show that the natural frequency changes according to the location and stiffness of the spacer. Results indicate that the frequency coupling between damping spacer and sloshing liquid is obvious near the free liquid surface. It is shown that the coupling frequency increases with the increase of damping baffle rigidity.
基金
theNationalNaturalScienceFoundationofChina(10272022,10572022)
BasicResearchFoundationofBeijingInstituteofTechnol-ogy(000Y07)