本文提出了基于多叉树蚁群算法(antc olony optimization based on multi-way tree)的区位选址优化方法。在多目标和大型空间尺度约束条件下,地理区位选址的解决方案组合呈现海量规模、空间搜索量庞大,难以求出理想解。基于多叉树的蚁...本文提出了基于多叉树蚁群算法(antc olony optimization based on multi-way tree)的区位选址优化方法。在多目标和大型空间尺度约束条件下,地理区位选址的解决方案组合呈现海量规模、空间搜索量庞大,难以求出理想解。基于多叉树的蚁群算法对地理空间进行多叉树划分,在多叉树的层上构造蚂蚁路径(antpath),让蚂蚁在多叉树的搜索路径上逐步留下信息素,借助信息素的通讯来间接协作获得理想的候选解。采用该方法用于广州市的地理区位选址,取得良好结果。实验结果表明:采用基于多叉树的蚁群算法,改善了蚂蚁在空间搜索能力,适合求解大规模空间下的区位选址问题。展开更多
文摘本文提出了基于多叉树蚁群算法(antc olony optimization based on multi-way tree)的区位选址优化方法。在多目标和大型空间尺度约束条件下,地理区位选址的解决方案组合呈现海量规模、空间搜索量庞大,难以求出理想解。基于多叉树的蚁群算法对地理空间进行多叉树划分,在多叉树的层上构造蚂蚁路径(antpath),让蚂蚁在多叉树的搜索路径上逐步留下信息素,借助信息素的通讯来间接协作获得理想的候选解。采用该方法用于广州市的地理区位选址,取得良好结果。实验结果表明:采用基于多叉树的蚁群算法,改善了蚂蚁在空间搜索能力,适合求解大规模空间下的区位选址问题。