The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitut...The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.展开更多
The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the fr...The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.展开更多
In the paper [1], the geometrical mapping techniques based on Non-Uniform Rational B-Spline (NURBS) were introduced to solve an elliptic boundary value problem containing a singularity. In the mapping techniques, the ...In the paper [1], the geometrical mapping techniques based on Non-Uniform Rational B-Spline (NURBS) were introduced to solve an elliptic boundary value problem containing a singularity. In the mapping techniques, the inverse function of the NURBS geometrical mapping generates singular functions as well as smooth functions by an unconventional choice of control points. It means that the push-forward of the NURBS geometrical mapping that generates singular functions, becomes a piecewise smooth function. However, the mapping method proposed is not able to catch singularities emerging at multiple locations in a domain. Thus, we design the geometrical mapping that generates singular functions for each singular zone in the physical domain. In the design of the geometrical mapping, we should consider the design of control points on the interface between/among patches so that global basis functions are in C0?space. Also, we modify the B-spline functions whose supports include the interface between/among them. We put the idea in practice by solving elliptic boundary value problems containing multiple singularities.展开更多
When one solves differential equations by a spectral method,it is often convenient to shift from Chebyshev polynomials Tn(x) with coefficients anto modified basis functions that incorporate the boundary conditions.For...When one solves differential equations by a spectral method,it is often convenient to shift from Chebyshev polynomials Tn(x) with coefficients anto modified basis functions that incorporate the boundary conditions.For homogeneous Dirichlet boundary conditions,u(±1)=0,popular choices include the "Chebyshev difference basis" ζn(x)≡Tn+2(x)-Tn(x) with coefficients here denoted by bnand the "quadratic factor basis" Qn(x)≡(1-x2)Tn(x) with coefficients cn.If u(x) is weakly singular at the boundary,then the coefficients andecrease proportionally to O(A(n)/nκ) for some positive constant κ,where A(n) is a logarithm or a constant.We prove that the Chebyshev difference coefficients bndecrease more slowly by a factor of 1/n while the quadratic factor coefficients cndecrease more slowly still as O(A(n)/nκ-2).The error for the unconstrained Chebyshev series,truncated at degree n=N,is O(|A(N)|/Nκ) in the interior,but is worse by one power of N in narrow boundary layers near each of the endpoints.Despite having nearly identical error norms in interpolation,the error in the Chebyshev basis is concentrated in boundary layers near both endpoints,whereas the error in the quadratic factor and difference basis sets is nearly uniformly oscillating over the entire interval in x.Meanwhile,for Chebyshev polynomials,the values of their derivatives at the endpoints are O(n2),but only O(n) for the difference basis.Furthermore,we give the asymptotic coefficients and rigorous error estimates of the approximations in these three bases,solved by the least squares method.We also find an interesting fact that on the face of it,the aliasing error is regarded as a bad thing;actually,the error norm associated with the downward curving spectral coefficients decreases even faster than the error norm of infinite truncation.But the premise is under the same basis,and when involving different bases,it may not be established yet.展开更多
The value of a European option satisfies the Black-Scholes equation with appropriately specified final and boundary conditions.We transform the problem to an initial boundary value problem in dimensionless form.There ...The value of a European option satisfies the Black-Scholes equation with appropriately specified final and boundary conditions.We transform the problem to an initial boundary value problem in dimensionless form.There are two parameters in the coefficients of the resulting linear parabolic partial differential equation.For a range of values of these parameters,the solution of the problem has a boundary or an initial layer.The initial function has a discontinuity in the first-order derivative,which leads to the appearance of an interior layer.We construct analytically the asymptotic solution of the equation in a finite domain.Based on the asymptotic solution we can determine the size of the artificial boundary such that the required solution in a finite domain in x and at the final time is not affected by the boundary.Also,we study computationally the behaviour in the maximum norm of the errors in numerical solutions in cases such that one of the parameters varies from finite (or pretty large) to small values,while the other parameter is fixed and takes either finite (or pretty large) or small values. Crank-Nicolson explicit and implicit schemes using centered or upwind approximations to the derivative are studied.We present numerical computations,which determine experimentally the parameter-uniform rates of convergence.We note that this rate is rather weak,due probably to mixed sources of error such as initial and boundary layers and the discontinuity in the derivative of the solution.展开更多
The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix ar...The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50879090), and the Key Research Program of Hydrody- namics of China (No. 9140A 14030712JB 11044)
文摘The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.
基金supported by the National Natural Science Foundation of China (Grant No. 50779008)
文摘The derivation of Green function in a two-layer fluid model has been treated in different ways. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating due to the free surface and the interface. This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating. The source point is located either in the upper or lower part of a two-layer fluid of finite depth. The derivation is carried out by the method of singularities. This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present. Furthermore, experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results. Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower, for each case. The effect of the density on the internal waves is demonstrated. Also, it is shown how the surface and internal wave amplitudes are compared for both the wave modes. The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.
文摘In the paper [1], the geometrical mapping techniques based on Non-Uniform Rational B-Spline (NURBS) were introduced to solve an elliptic boundary value problem containing a singularity. In the mapping techniques, the inverse function of the NURBS geometrical mapping generates singular functions as well as smooth functions by an unconventional choice of control points. It means that the push-forward of the NURBS geometrical mapping that generates singular functions, becomes a piecewise smooth function. However, the mapping method proposed is not able to catch singularities emerging at multiple locations in a domain. Thus, we design the geometrical mapping that generates singular functions for each singular zone in the physical domain. In the design of the geometrical mapping, we should consider the design of control points on the interface between/among patches so that global basis functions are in C0?space. Also, we modify the B-spline functions whose supports include the interface between/among them. We put the idea in practice by solving elliptic boundary value problems containing multiple singularities.
基金supported by National Science Foundation of USA (Grant No. DMS1521158)National Natural Science Foundation of China (Grant No. 12101229)+1 种基金the Hunan Provincial Natural Science Foundation of China (Grant No. 2021JJ40331)the Chinese Scholarship Council (Grant Nos. 201606060017 and 202106720024)。
文摘When one solves differential equations by a spectral method,it is often convenient to shift from Chebyshev polynomials Tn(x) with coefficients anto modified basis functions that incorporate the boundary conditions.For homogeneous Dirichlet boundary conditions,u(±1)=0,popular choices include the "Chebyshev difference basis" ζn(x)≡Tn+2(x)-Tn(x) with coefficients here denoted by bnand the "quadratic factor basis" Qn(x)≡(1-x2)Tn(x) with coefficients cn.If u(x) is weakly singular at the boundary,then the coefficients andecrease proportionally to O(A(n)/nκ) for some positive constant κ,where A(n) is a logarithm or a constant.We prove that the Chebyshev difference coefficients bndecrease more slowly by a factor of 1/n while the quadratic factor coefficients cndecrease more slowly still as O(A(n)/nκ-2).The error for the unconstrained Chebyshev series,truncated at degree n=N,is O(|A(N)|/Nκ) in the interior,but is worse by one power of N in narrow boundary layers near each of the endpoints.Despite having nearly identical error norms in interpolation,the error in the Chebyshev basis is concentrated in boundary layers near both endpoints,whereas the error in the quadratic factor and difference basis sets is nearly uniformly oscillating over the entire interval in x.Meanwhile,for Chebyshev polynomials,the values of their derivatives at the endpoints are O(n2),but only O(n) for the difference basis.Furthermore,we give the asymptotic coefficients and rigorous error estimates of the approximations in these three bases,solved by the least squares method.We also find an interesting fact that on the face of it,the aliasing error is regarded as a bad thing;actually,the error norm associated with the downward curving spectral coefficients decreases even faster than the error norm of infinite truncation.But the premise is under the same basis,and when involving different bases,it may not be established yet.
基金partially supported by the Russian Foundation for Basic Research(grant No.07-01-00729)the Singapore Academic Research Funds R-146-000-064-112 and R-146-000-099-112the Boole Centre for Research in Informatics at the National University of Ireland,Cork and by the Mathematics Applications Consortium for Science and Industry in Ireland(MACSI)under the Science Foundation Ireland Mathematics Initiative.
文摘The value of a European option satisfies the Black-Scholes equation with appropriately specified final and boundary conditions.We transform the problem to an initial boundary value problem in dimensionless form.There are two parameters in the coefficients of the resulting linear parabolic partial differential equation.For a range of values of these parameters,the solution of the problem has a boundary or an initial layer.The initial function has a discontinuity in the first-order derivative,which leads to the appearance of an interior layer.We construct analytically the asymptotic solution of the equation in a finite domain.Based on the asymptotic solution we can determine the size of the artificial boundary such that the required solution in a finite domain in x and at the final time is not affected by the boundary.Also,we study computationally the behaviour in the maximum norm of the errors in numerical solutions in cases such that one of the parameters varies from finite (or pretty large) to small values,while the other parameter is fixed and takes either finite (or pretty large) or small values. Crank-Nicolson explicit and implicit schemes using centered or upwind approximations to the derivative are studied.We present numerical computations,which determine experimentally the parameter-uniform rates of convergence.We note that this rate is rather weak,due probably to mixed sources of error such as initial and boundary layers and the discontinuity in the derivative of the solution.
基金supported by the Funds for Creative Research Groups of China (50921001)the State Key Development Program for Basic Research of China (2010CB832704)
文摘The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method. The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule. The solid angle for the open surface is treated in direct method based on its definition. Several kinds of configurations for the bubbles and free surface have been investigated. The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface. The bubble dynamics and their interactions have close relation with the standoff distances, buoyancy parameters and initial sizes of bubbles. Completely different bubble shapes, free surface motions, jetting patterns and pressure distributions under different parameters can be observed in our model, as demon- strated in our calculation results.