High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
A new method for increasing laser induced damage threshold (LIDT) of dielectric antireflection (AR) coating is proposed. Compared with AR film stack of H2.5L (H:HfO2, L:SiO2) on BK7 substrate, SiO2 interracial...A new method for increasing laser induced damage threshold (LIDT) of dielectric antireflection (AR) coating is proposed. Compared with AR film stack of H2.5L (H:HfO2, L:SiO2) on BK7 substrate, SiO2 interracial layer with four quarter wavelength optical thickness (QWOT) is deposited on the substrate before the preparation of H2.5L film. It is found that the introduction of SiO2 interfacial layer with a certain thickness is effective and flexible to increase the LIDT of dielectric AR coatings. The measured LIDT is enhanced by about 50%, while remaining the low reflectivity with less than 0.09% at the center wavelength of 1064 nm. Detailed mechanisms of the LIDT enhancement are discussed.展开更多
Fe-Mn-Si-Cr-Ni composite powders are utilized to form a functional shape memory alloy cladding layer (SMACL) using a laser cladding method. The microstructure, microhardness, and phase composition of the SMACL are m...Fe-Mn-Si-Cr-Ni composite powders are utilized to form a functional shape memory alloy cladding layer (SMACL) using a laser cladding method. The microstructure, microhardness, and phase composition of the SMACL are measured, and the extent of deformation of the laser cladding samples is determined. The SMACL is composed of planar, cellular, and dendritic crystals, equiaxed grains, and oxides with increasing distance from the substrate surface. The SMACL is further composed of ε-martensite and γ-austenite phases, while the tempered SMACL consists mainly of γ-austenite. Extensive deformation occurs in AISI 304 stainless steel laser cladding samples. By contrast, limited deformation is observed in the SMACL samples.展开更多
In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient sig...In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.展开更多
Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed b...Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.展开更多
Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides withi...Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides within datacenters.The conventional pluggable optics increases at a much slower rate than that of datacenter trafc.The gap between application requirements and the capability of conventional pluggable optics keeps increasing,a trend that is unsustainable.Copackaged optics(CPO)is a disruptive approach to increasing the interconnecting bandwidth density and energy efciency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics.CPO is widely regarded as a promising solution for future datacenter interconnections,and silicon platform is the most promising platform for large-scale integration.Leading international companies(e.g.,Intel,Broadcom and IBM)have heavily investigated in CPO technology,an inter-disciplinary research feld that involves photonic devices,integrated circuits design,packaging,photonic device modeling,electronic-photonic co-simulation,applications,and standardization.This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform,identify the key challenges,and point out the potential solutions,hoping to encourage collaboration between diferent research felds to accelerate the development of CPO technology.展开更多
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
文摘A new method for increasing laser induced damage threshold (LIDT) of dielectric antireflection (AR) coating is proposed. Compared with AR film stack of H2.5L (H:HfO2, L:SiO2) on BK7 substrate, SiO2 interracial layer with four quarter wavelength optical thickness (QWOT) is deposited on the substrate before the preparation of H2.5L film. It is found that the introduction of SiO2 interfacial layer with a certain thickness is effective and flexible to increase the LIDT of dielectric AR coatings. The measured LIDT is enhanced by about 50%, while remaining the low reflectivity with less than 0.09% at the center wavelength of 1064 nm. Detailed mechanisms of the LIDT enhancement are discussed.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20122125120013)the Dalian Science and Technology Fund(No.2011J21DW003)the Fundamental Research Funds for the Central Universities(Nos.3132013060 and 3132013311)
文摘Fe-Mn-Si-Cr-Ni composite powders are utilized to form a functional shape memory alloy cladding layer (SMACL) using a laser cladding method. The microstructure, microhardness, and phase composition of the SMACL are measured, and the extent of deformation of the laser cladding samples is determined. The SMACL is composed of planar, cellular, and dendritic crystals, equiaxed grains, and oxides with increasing distance from the substrate surface. The SMACL is further composed of ε-martensite and γ-austenite phases, while the tempered SMACL consists mainly of γ-austenite. Extensive deformation occurs in AISI 304 stainless steel laser cladding samples. By contrast, limited deformation is observed in the SMACL samples.
文摘In this paper, we investigate the single event transient (SET) occurring in partially depleted silicon-on-insulator (PDSOI) metal-oxide-semiconductor (MOS) devices irradiated by pulsed laser beams. Transient signal characteristics of a 0.18-p.m single MOS device, such as SET pulse width, pulse maximum, and collected charge, are measured and an- alyzed at wafer level. We analyze in detail the influences of supply voltage and pulse energy on the SET characteristics of the device under test (DUT). The dependences of SET characteristics on drain-induced barrier lowering (DIBL) and the parasitic bipolar junction transistor (PBJT) are also discussed. These results provide a guide for radiation-hardened deep sub-micrometer PDSOI technology for space electronics applications.
基金the National Natural Science Foundation of China(NSFC-60537010)the National"973"Program of China(No.2007CB307004 and 2006CB302804)
文摘Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.
基金supported by the National Key Research and Development Program of China(No.2019YFB2203004).
文摘Due to the rise of 5G,IoT,AI,and high-performance computing applications,datacenter trafc has grown at a compound annual growth rate of nearly 30%.Furthermore,nearly three-fourths of the datacenter trafc resides within datacenters.The conventional pluggable optics increases at a much slower rate than that of datacenter trafc.The gap between application requirements and the capability of conventional pluggable optics keeps increasing,a trend that is unsustainable.Copackaged optics(CPO)is a disruptive approach to increasing the interconnecting bandwidth density and energy efciency by dramatically shortening the electrical link length through advanced packaging and co-optimization of electronics and photonics.CPO is widely regarded as a promising solution for future datacenter interconnections,and silicon platform is the most promising platform for large-scale integration.Leading international companies(e.g.,Intel,Broadcom and IBM)have heavily investigated in CPO technology,an inter-disciplinary research feld that involves photonic devices,integrated circuits design,packaging,photonic device modeling,electronic-photonic co-simulation,applications,and standardization.This review aims to provide the readers a comprehensive overview of the state-of-the-art progress of CPO in silicon platform,identify the key challenges,and point out the potential solutions,hoping to encourage collaboration between diferent research felds to accelerate the development of CPO technology.