There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se...Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature.展开更多
This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a t...This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a time-series gener ative adversarial network(TimeGAN)is used to learn the distri bution law of the original PV data samples and the temporal correlations between their features,and these are then used to generate new samples to enhance the training set.Subsequently,a hybrid network model that fuses bi-directional long-short term memory(BiLSTM)network with attention mechanism(AM)in the framework of deep&cross network(DCN)is con structed to effectively extract deep information from the origi nal features while enhancing the impact of important informa tion on the prediction results.Finally,the hyperparameters in the hybrid network model are optimized using the whale optimi zation algorithm(WOA),which prevents the network model from falling into a local optimum and gives the best prediction results.The simulation results show that after data enhance ment by TimeGAN,the hybrid prediction model proposed in this paper can effectively improve the accuracy of short-term PV power prediction and has wide applicability.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w...Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.展开更多
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l...The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output.展开更多
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da...Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.展开更多
Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du...Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.展开更多
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ...With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.展开更多
The time series of precipitation in flood season (May-September) at WuhanStation, which is set as an example of the kind of time series with chaos characters, is split intotwo parts: One includes macro climatic timesc...The time series of precipitation in flood season (May-September) at WuhanStation, which is set as an example of the kind of time series with chaos characters, is split intotwo parts: One includes macro climatic timescale period waves that are affected by some relativelysteady climatic factors such as astronomical factors (sunspot, etc.), some other known and/orunknown factors, and the other includes micro climatic timescale period waves superimposed on themacro one. The evolutionary modeling (EM), which develops from genetic programming (GP), is supposedto be adept at simulating the former part because it creates the nonlinear ordinary differentialequation (NODE) based upon the data series. The natural fractals (NF) are used to simulate thelatter part. The final prediction is the sum of results from both methods, thus the model canreflect multi-time scale effects of forcing factors in the climate system. The results of thisexample for 2002 and 2003 are satisfactory for climatic prediction operation. The NODE can suggestthat the data vary with time, which is beneficial to think over short-range climatic analysis andprediction. Comparison in principle between evolutionary modeling and linear modeling indicates thatthe evolutionary one is a better way to simulate the complex time series with nonlinearcharacteristics.展开更多
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.
基金supported by the National Key Research and Development Program(2021YFB2500300)Beijing Municipal Natural Science Foundation(Z200011)+1 种基金National Natural Science Foundation of China(T2322015,22209093,22209094,22379121,and 21825501)the Fundamental Research Funds for the Central Universities.
文摘Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature.
基金supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(No.U19A20106)the Science and Technology Major Projects of Anhui Province(No.202203f07020003)the Science and Technology Project of State Grid Corporation of China(No.52120522000F).
文摘This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a time-series gener ative adversarial network(TimeGAN)is used to learn the distri bution law of the original PV data samples and the temporal correlations between their features,and these are then used to generate new samples to enhance the training set.Subsequently,a hybrid network model that fuses bi-directional long-short term memory(BiLSTM)network with attention mechanism(AM)in the framework of deep&cross network(DCN)is con structed to effectively extract deep information from the origi nal features while enhancing the impact of important informa tion on the prediction results.Finally,the hyperparameters in the hybrid network model are optimized using the whale optimi zation algorithm(WOA),which prevents the network model from falling into a local optimum and gives the best prediction results.The simulation results show that after data enhance ment by TimeGAN,the hybrid prediction model proposed in this paper can effectively improve the accuracy of short-term PV power prediction and has wide applicability.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
文摘Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.
文摘The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output.
文摘Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
基金Natural Science Foundation of China!(No.598780 30 )
文摘Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.
基金supported by the National Natural Science Foundation of China (62101603)the Shenzhen Science and Technology Program(KQTD20190929172704911)+3 种基金the Aeronautical Science Foundation of China (2019200M1001)the National Nature Science Foundation of Guangdong (2021A1515011979)the Guangdong Key Laboratory of Advanced IntelliSense Technology (2019B121203006)the Pearl R iver Talent Recruitment Program (2019ZT08X751)。
文摘With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China under Grant No. 42075034.
文摘The time series of precipitation in flood season (May-September) at WuhanStation, which is set as an example of the kind of time series with chaos characters, is split intotwo parts: One includes macro climatic timescale period waves that are affected by some relativelysteady climatic factors such as astronomical factors (sunspot, etc.), some other known and/orunknown factors, and the other includes micro climatic timescale period waves superimposed on themacro one. The evolutionary modeling (EM), which develops from genetic programming (GP), is supposedto be adept at simulating the former part because it creates the nonlinear ordinary differentialequation (NODE) based upon the data series. The natural fractals (NF) are used to simulate thelatter part. The final prediction is the sum of results from both methods, thus the model canreflect multi-time scale effects of forcing factors in the climate system. The results of thisexample for 2002 and 2003 are satisfactory for climatic prediction operation. The NODE can suggestthat the data vary with time, which is beneficial to think over short-range climatic analysis andprediction. Comparison in principle between evolutionary modeling and linear modeling indicates thatthe evolutionary one is a better way to simulate the complex time series with nonlinearcharacteristics.