期刊文献+
共找到429篇文章
< 1 2 22 >
每页显示 20 50 100
江苏省若干代表站年降水量的多年变化和系列代表性分析 被引量:19
1
作者 马蕴芬 《水文》 CSCD 北大核心 2003年第3期45-48,51,共5页
利用长系列雨量站资料,采用数理统计法分析了江苏省年降水量的多年变化,对1956~2000年、1956~1979年、1971~2000年、1980~2000年等短系列年降水量的系列代表性做出了分析评价,为合理选用水文系列提供了依据,对江苏省水资源调查评价... 利用长系列雨量站资料,采用数理统计法分析了江苏省年降水量的多年变化,对1956~2000年、1956~1979年、1971~2000年、1980~2000年等短系列年降水量的系列代表性做出了分析评价,为合理选用水文系列提供了依据,对江苏省水资源调查评价和水资源综合规划具有重要的参考价值,可在生产中应用。 展开更多
关键词 年降水量 长系列 多年变化 短系列 代表性分析 江苏省
下载PDF
小麦理想株型研究 Ⅰ.小麦株高梯度系列的株型、产量及品质性状的变化研究 被引量:14
2
作者 张树榛 葛亚新 《北京农业大学学报》 CSCD 北大核心 1990年第2期125-132,共8页
对小麦回交转育所得七个株高梯度系列的35个系统的研究结果表明,矮秆品种高化共同表现在第4,5节间及3,4相对叶间距的增长,这对减少郁蔽有利,籽粒产量及千粒重均有显著增加的趋势,收获指数仍较高,品质也不致下降,在矮×高的矮秆分离... 对小麦回交转育所得七个株高梯度系列的35个系统的研究结果表明,矮秆品种高化共同表现在第4,5节间及3,4相对叶间距的增长,这对减少郁蔽有利,籽粒产量及千粒重均有显著增加的趋势,收获指数仍较高,品质也不致下降,在矮×高的矮秆分离群体中选相对较高的植株有利;高秆矮化共同表现在第4节间及3,4相对叶间距缩短,品质性状可得到一定程度改良,回交使高秆品种矮化有效。提出了相对株型的概念,并认为下4节间总相对长、相对叶间距等可作为株型识别的指标。 展开更多
关键词 小麦 理想株型 株高梯度系列 矮秆
下载PDF
Classification of Short Time Series in Early Parkinson’s Disease With Deep Learning of Fuzzy Recurrence Plots 被引量:9
3
作者 Tuan D.Pham Karin Wardell +1 位作者 Anders Eklund Goran Salerud 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第6期1306-1317,共12页
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for... There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects. 展开更多
关键词 Deep learning early Parkinson’s disease(PD) fuzzy recurrence plots long short-term memory(LSTM) neural networks pattern classification short time series
下载PDF
A self-adaptive,data-driven method to predict the cycling life of lithium-ion batteries 被引量:3
4
作者 Chao Han Yu-Chen Gao +5 位作者 Xiang Chen Xinyan Liu Nan Yao Legeng Yu Long Kong Qiang Zhang 《InfoMat》 SCIE CSCD 2024年第4期47-55,共9页
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se... Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature. 展开更多
关键词 cycling lifespan prediction lithium-ion batteries long short-term memory method machine learning time series forecasting
原文传递
大连月平均气温短序列订正方法 被引量:7
5
作者 尹文昱 祝青林 《气象科技》 2008年第6期740-744,共5页
针对大连地区气象台站少,研究区域气候比较困难的实际,以大连地区7个气象台站作为基本站,以各自所辖的气象哨作为订正站,探讨适合大连地区月平均气温的短序列订正的简便实用方法。构建了12个气象哨与各自基本站之间月平均气温序列订正... 针对大连地区气象台站少,研究区域气候比较困难的实际,以大连地区7个气象台站作为基本站,以各自所辖的气象哨作为订正站,探讨适合大连地区月平均气温的短序列订正的简便实用方法。构建了12个气象哨与各自基本站之间月平均气温序列订正的一元线性回归方程和差值订正方程,并从统计学和订正误差的角度进行了比较分析。结果表明:两种方法的订正误差无显著性差异,均可以用于大连地区月平均气温的短序列订正。 展开更多
关键词 大连地区 气温短序列 订正方法
下载PDF
新疆年降水量多年变化分析 被引量:5
6
作者 冯国华 尤平达 刘涛 《新疆农业大学学报》 CAS 2004年第2期66-71,共6页
 利用长系列雨量站资料,采用数理统计法分析年降水量的多年变化,并对1956~2000,1956~1979,1971~2000,1980~2000年等短系列年降水量的系列代表性作出分析评价,为合理选用水文系列提供依据;对新疆水资源调查评价和水资源综合规划具...  利用长系列雨量站资料,采用数理统计法分析年降水量的多年变化,并对1956~2000,1956~1979,1971~2000,1980~2000年等短系列年降水量的系列代表性作出分析评价,为合理选用水文系列提供依据;对新疆水资源调查评价和水资源综合规划具有重要的参考价值。 展开更多
关键词 年降水量 多年变化 长系列 短系列 代表性 分析评价
下载PDF
Hybrid Network Model Based on Data Enhancement for Short-term Power Prediction of New PV Plants 被引量:2
7
作者 Shangpeng Zhong Xiaoming Wang +2 位作者 Bin Xu Hongbin Wu Ming Ding 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期77-88,共12页
This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a t... This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a time-series gener ative adversarial network(TimeGAN)is used to learn the distri bution law of the original PV data samples and the temporal correlations between their features,and these are then used to generate new samples to enhance the training set.Subsequently,a hybrid network model that fuses bi-directional long-short term memory(BiLSTM)network with attention mechanism(AM)in the framework of deep&cross network(DCN)is con structed to effectively extract deep information from the origi nal features while enhancing the impact of important informa tion on the prediction results.Finally,the hyperparameters in the hybrid network model are optimized using the whale optimi zation algorithm(WOA),which prevents the network model from falling into a local optimum and gives the best prediction results.The simulation results show that after data enhance ment by TimeGAN,the hybrid prediction model proposed in this paper can effectively improve the accuracy of short-term PV power prediction and has wide applicability. 展开更多
关键词 New photovoltaic(PV)plant short-term predic tion time-series generative adversarial network(TimeGAN) hy brid network hyperparameter
原文传递
适用于串联电池包的短路故障诊断方法 被引量:6
8
作者 李晨 姜兵 +2 位作者 夏伟栋 许洪华 马宏忠 《电源技术》 CAS 北大核心 2021年第8期1008-1011,共4页
锂离子电池短路故障是诱发锂离子电池热失控事故的主要原因。特别是梯次利用场景下,串联电池包中电池的不一致性差异使得电池更容易发生短路故障,增加了热失控的风险。电池包中某一电池短路时,该电池的电压因能量流失而出现显著下降,而... 锂离子电池短路故障是诱发锂离子电池热失控事故的主要原因。特别是梯次利用场景下,串联电池包中电池的不一致性差异使得电池更容易发生短路故障,增加了热失控的风险。电池包中某一电池短路时,该电池的电压因能量流失而出现显著下降,而其余电池的电压不会出现显著下降,因此可以利用电池电压下降的差异识别短路故障。然而,由于电池包中存在不一致性,短路造成的电压下降特征在一定程度上被掩盖。综合利用zero-mean和相关系数,在消除不一致性影响的基础上,实现对电压下降特征的准确表征,从而可靠地识别出电池包中的短路故障。基于FUDS典型工况对所提方法的有效性进行了实验验证。 展开更多
关键词 锂离子电池 短路 串联 故障诊断
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
9
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 Network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
Enhancing photovoltaic energy forecasting:a progressive approach using wavelet packet decomposition
10
作者 Khaled Ferkous Mawloud Guermoui +2 位作者 Abderahmane Bellaour Tayeb boulmaiz Nadjem Bailek 《Clean Energy》 EI CSCD 2024年第3期95-108,共14页
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w... Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management. 展开更多
关键词 short photovoltaic power forecasting wavelet packet decomposition sub-series reconstruction machine learning in energy forecasting sustainable power stations renewable energy
原文传递
An Integrated Analysis of Yield Prediction Models:A Comprehensive Review of Advancements and Challenges
11
作者 Nidhi Parashar Prashant Johri +2 位作者 Arfat Ahmad Khan Nitin Gaur Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2024年第7期389-425,共37页
The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine l... The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research.Deep learning(DL)and machine learning(ML)models effectively deal with such challenges.This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024.In addition,it analyses the effectiveness of various input parameters considered in crop yield prediction models.We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield.The total number of articles reviewed for crop yield prediction using ML,meta-modeling(Crop models coupled with ML/DL),and DL-based prediction models and input parameter selection is 125.We conduct the research by setting up five objectives for this research and discussing them after analyzing the selected research papers.Each study is assessed based on the crop type,input parameters employed for prediction,the modeling techniques adopted,and the evaluation metrics used for estimatingmodel performance.We also discuss the ethical and social impacts of AI on agriculture.However,various approaches presented in the scientific literature have delivered impressive predictions,they are complicateddue to intricate,multifactorial influences oncropgrowthand theneed for accuratedata-driven models.Therefore,thorough research is required to deal with challenges in predicting agricultural output. 展开更多
关键词 Machine learning crop yield prediction deep learning remote sensing long short-term memory time series prediction systematic literature review
下载PDF
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:2
12
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 DATA Mining Time series FUNDAMENTAL DATA DATA Frequency Application DOMAIN short-TERM Stocks PREDICTION
下载PDF
RESEARCH ON MUNICIPAL WATER DEMANDS FORECAST 被引量:3
13
作者 赵新华 田一梅 陈春芳 《Transactions of Tianjin University》 EI CAS 2001年第1期21-25,共5页
Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du... Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation. 展开更多
关键词 water supply short-term demand forecast time-series analysis
下载PDF
渭河上游地区年降水量系列代表性和多年变化分析 被引量:2
14
作者 牛文虎 吕刚 +2 位作者 彭飞 张俊峰 孔德峰 《黄河水利职业技术学院学报》 2016年第4期10-14,共5页
以天水、甘谷、首阳、新店子、申都5个雨量站为代表站,采用数理统计法对天水站1935~2014年,甘谷、首阳、新店子、申都1952~2014年系列年降水量的系列代表性进行了分析,并对各代表站长短系列降水量的多年变化过程进行了探讨。
关键词 渭河上游 年降水量 变化过程 长系列 短系列 代表性分析
下载PDF
Classification of birds and drones by exploiting periodical motions in Doppler spectrum series 被引量:1
15
作者 DUAN Jia ZHANG Lei +3 位作者 WU Yifeng ZHANG Yue ZHAO Zeya GUO Xinrong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期19-27,共9页
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ... With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm. 展开更多
关键词 target classification long-to-short memory(LSTM) drone discrimination Doppler spectrum series
下载PDF
单元存在短路/断路故障模式时串联和并联系统可靠性评定方法 被引量:2
16
作者 金星 洪延姬 +1 位作者 文明 崔村燕 《弹箭与制导学报》 CSCD 北大核心 2006年第3期259-261,265,共4页
在航空、航天和机械领域中,由于单元存在短路和断路故障情况,造成系统出现短路和断路故障,因此,研究系统出现短路和断路故障时可靠性评定方法,对于工程应用具有重要的指导意义。根据单元短路和断路故障的可靠性试验数据,采用系统可靠性... 在航空、航天和机械领域中,由于单元存在短路和断路故障情况,造成系统出现短路和断路故障,因此,研究系统出现短路和断路故障时可靠性评定方法,对于工程应用具有重要的指导意义。根据单元短路和断路故障的可靠性试验数据,采用系统可靠性一阶矩和二阶矩的拟合方法,提出了串联系统和并联系统可靠性评定的方法。并且通过典型实例进行了具体的分析和计算。 展开更多
关键词 短路故障 断路故障 可靠性评定 串联系统 并联系统
下载PDF
The Evolutionary Modeling and Short-range Climatic Prediction for Meteorological Element Time Series
17
作者 俞康庆 周月华 +1 位作者 杨荆安 康卓 《Acta meteorologica Sinica》 SCIE 2005年第3期375-380,共6页
The time series of precipitation in flood season (May-September) at WuhanStation, which is set as an example of the kind of time series with chaos characters, is split intotwo parts: One includes macro climatic timesc... The time series of precipitation in flood season (May-September) at WuhanStation, which is set as an example of the kind of time series with chaos characters, is split intotwo parts: One includes macro climatic timescale period waves that are affected by some relativelysteady climatic factors such as astronomical factors (sunspot, etc.), some other known and/orunknown factors, and the other includes micro climatic timescale period waves superimposed on themacro one. The evolutionary modeling (EM), which develops from genetic programming (GP), is supposedto be adept at simulating the former part because it creates the nonlinear ordinary differentialequation (NODE) based upon the data series. The natural fractals (NF) are used to simulate thelatter part. The final prediction is the sum of results from both methods, thus the model canreflect multi-time scale effects of forcing factors in the climate system. The results of thisexample for 2002 and 2003 are satisfactory for climatic prediction operation. The NODE can suggestthat the data vary with time, which is beneficial to think over short-range climatic analysis andprediction. Comparison in principle between evolutionary modeling and linear modeling indicates thatthe evolutionary one is a better way to simulate the complex time series with nonlinearcharacteristics. 展开更多
关键词 time series evolutionary modeling short-range climatic prediction
原文传递
InSAR地表沉降监测在豫北平原的应用研究 被引量:1
18
作者 王毅 黄同新 邰建豪 《地理空间信息》 2021年第11期81-84,95,I0007,共6页
以华北平原(河南部分)为研究对象,采用短基线集InSAR监测技术,基于RadarSat-2雷达图像数据,以形变监测为需求,对该区域开展地表沉降监测,并分析其成因。整体反演沉降区与城市发展形成的地下水漏斗区、地热应用密集区以及濮阳油田开采沉... 以华北平原(河南部分)为研究对象,采用短基线集InSAR监测技术,基于RadarSat-2雷达图像数据,以形变监测为需求,对该区域开展地表沉降监测,并分析其成因。整体反演沉降区与城市发展形成的地下水漏斗区、地热应用密集区以及濮阳油田开采沉降区的空间分布基本吻合,进一步证明人类社会活动是形成地表沉降的重要因素。 展开更多
关键词 INSAR 沉降监测 短基线 时间序列 沉降分析
下载PDF
论短系列球阀阀座通脂斜孔加工工艺及工装设计
19
作者 黄纪忠 余林峰 +1 位作者 胡晋康 李福强 《阀门》 2023年第5期536-539,共4页
球阀是管线应用最为广泛的阀门之一,具有密封性能好、结构紧凑、流通阻力小、占用空间位置小、开关迅速等特点,常规球阀按结构分为浮动式球阀与固定式球阀,固定式球阀的球体由上下阀杆固定在阀体中心,靠介质力推动阀座贴合球面密封,对... 球阀是管线应用最为广泛的阀门之一,具有密封性能好、结构紧凑、流通阻力小、占用空间位置小、开关迅速等特点,常规球阀按结构分为浮动式球阀与固定式球阀,固定式球阀的球体由上下阀杆固定在阀体中心,靠介质力推动阀座贴合球面密封,对于口径偏大规格球阀一般选用固定球阀。固定球阀有许多功能特点,如用户要求阀座必须具有注脂、止回阀功能,对于中低压力短系列固定球阀,由于标准规定的结构尺寸短、空间有限,按常规方法设计加工很难保证阀座同时具有注脂、止回、通脂功能。通过设计一种斜式角度架工装,辅助阀座通脂孔斜接中法兰注脂、止回阀螺纹孔,从而达到功能要求。 展开更多
关键词 固定球阀 短系列 注脂阀 止回阀 通脂孔
下载PDF
巧用“虚短”和“虚断”分析电路谐振
20
作者 王韦刚 涂真珍 +1 位作者 史学军 刘芫健 《大学物理》 2023年第7期15-20,共6页
众所周知,“虚短”和“虚断”是模拟电子技术中分析运放电路的重要手段.然而,作者在多年的教学与实践中发现,该方法同样可以巧妙地用于“电路分析基础”中谐振相关问题的分析,而且该技巧简单直观,可以免去复杂的复数运算,应用起来方便快... 众所周知,“虚短”和“虚断”是模拟电子技术中分析运放电路的重要手段.然而,作者在多年的教学与实践中发现,该方法同样可以巧妙地用于“电路分析基础”中谐振相关问题的分析,而且该技巧简单直观,可以免去复杂的复数运算,应用起来方便快捷.本文通过理论分析和实例验证了所提方法的有效性,在相关电路分析中具有一定的价值. 展开更多
关键词 “虚短” “虚断” 串联谐振 并联谐振 谐振频率
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部