Computer model is developed for non-steady and steady-state process of thin-walled tube extension by the rigid punch with curved profile. Rigid-plastic membrane shell theory with quadratic yield criterion is used. Tub...Computer model is developed for non-steady and steady-state process of thin-walled tube extension by the rigid punch with curved profile. Rigid-plastic membrane shell theory with quadratic yield criterion is used. Tube material normal anisotropy, work hardening, wall thickness variation and friction effects are considered. FORTRAN programs of the model predict distributions of the thickness, meridian stress, yield stress and pressure along curved generator of deformed tube and the tube extension force versus punch displacement relation. Model predictions are correlated with experimental data.展开更多
文摘Computer model is developed for non-steady and steady-state process of thin-walled tube extension by the rigid punch with curved profile. Rigid-plastic membrane shell theory with quadratic yield criterion is used. Tube material normal anisotropy, work hardening, wall thickness variation and friction effects are considered. FORTRAN programs of the model predict distributions of the thickness, meridian stress, yield stress and pressure along curved generator of deformed tube and the tube extension force versus punch displacement relation. Model predictions are correlated with experimental data.