Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern...Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.展开更多
To expand crop planting areas,reestablishment of crop latitude adaptation based on genetic variation in photoperiodic genes can be performed,but it is quite time consuming.By contrast,a crop variety that already exhib...To expand crop planting areas,reestablishment of crop latitude adaptation based on genetic variation in photoperiodic genes can be performed,but it is quite time consuming.By contrast,a crop variety that already exhibits multi-latitude adaptation has the potential to increase its planting areas to be more widely and quickly available.However,the importance and potential of multi-latitude adaptation of crop varieties have not been systematically described.Here,combining daylength-sensing data with the cropping system of elite rice and maize varieties,we found that varieties with gradual daylength sensing coupled with optimum cropping modes have an enhanced capacity for multi-latitude adaptation in China.Furthermore,this multi-latitude adaptation expanded their planting areas and indirectly improved China’s nationwide rice and maize unit yield.Thus,coupling the daylength-sensing process with optimum cropping modes to enhance latitude adaptability of excellent varieties represents an exciting approach for deploying crop varieties with the potential to expand their planting areas and quickly improve nationwide crop unit yield in developing countries.展开更多
To effectively obtain the downforce of the gauge wheels in real time,mechanical models of the interaction among the ground,gauge wheels,gauge wheel arms,and depth adjustment lever were constructed.A measuring method w...To effectively obtain the downforce of the gauge wheels in real time,mechanical models of the interaction among the ground,gauge wheels,gauge wheel arms,and depth adjustment lever were constructed.A measuring method was proposed for monitoring the downforce through a two-dimensional radial sensing device,and a corresponding prototype was designed.Through simulation analysis of the sensing device with ANSYS,a 45°angle was determined to exist between the strain gauge axis and the sensing device axis,and the Wheatstone bridging circuit of R1+R3−R5−R7(R stands for resistance strain gauge,different figures represent the strain gauge number)and R2+R4−R6−R8 was adopted.According to performance and calibration tests for the sensing device,the maximum interaction effect between the X and Y axes was 2.52%,and the output signal was stable and consistent.The standard error of the slope of the fitting equation of the downforce calculation model is 0.008.According to the field test,the average downforce of the gauge wheels was 1148,1017,843,and 713 N,at different sowing speeds of 6,8,10,and 12 km/h,respectively.The coefficients of variation were 0.40,0.41,0.62,and 0.71,respectively.The results indicate that the downforce fluctuation of the gauge wheels became more severe with increasing planting speed.Both the strain simulation analysis and field test verified that the measurement method is accurate and reliable,the performance of the sensing device is stable,the measurement method and sensing device meet the application requirements and lay a foundation for the research of accurate and stable control of downforce of no-till planter.展开更多
基金This work is supported by the National Natural Science Foundation of China[grant numbers 91738302 and 91838303]the National Science Fund for Distinguished Young Scholars[grant number 61825103]Thanks for the support of China Centre for Resources Satellite Data and Application(CRESDA).
文摘Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.
基金supported by the National Science Foundation of Fujian Province of China(no.2022J02004)the Open Research Fund of State Key Laboratory of Hybrid Rice(Hunan Hybrid Rice Research Center).
文摘To expand crop planting areas,reestablishment of crop latitude adaptation based on genetic variation in photoperiodic genes can be performed,but it is quite time consuming.By contrast,a crop variety that already exhibits multi-latitude adaptation has the potential to increase its planting areas to be more widely and quickly available.However,the importance and potential of multi-latitude adaptation of crop varieties have not been systematically described.Here,combining daylength-sensing data with the cropping system of elite rice and maize varieties,we found that varieties with gradual daylength sensing coupled with optimum cropping modes have an enhanced capacity for multi-latitude adaptation in China.Furthermore,this multi-latitude adaptation expanded their planting areas and indirectly improved China’s nationwide rice and maize unit yield.Thus,coupling the daylength-sensing process with optimum cropping modes to enhance latitude adaptability of excellent varieties represents an exciting approach for deploying crop varieties with the potential to expand their planting areas and quickly improve nationwide crop unit yield in developing countries.
基金supported by the State’s Key Project of Research and Development Plan of China(Grant No.2021YFD2000401)the Heilongjiang Province Engineering Science and Technology Major Project of China(Grant No.2020ZX17B01)the National Modern Agricultural Industry Technology System Project(Grant No.GARS-04).
文摘To effectively obtain the downforce of the gauge wheels in real time,mechanical models of the interaction among the ground,gauge wheels,gauge wheel arms,and depth adjustment lever were constructed.A measuring method was proposed for monitoring the downforce through a two-dimensional radial sensing device,and a corresponding prototype was designed.Through simulation analysis of the sensing device with ANSYS,a 45°angle was determined to exist between the strain gauge axis and the sensing device axis,and the Wheatstone bridging circuit of R1+R3−R5−R7(R stands for resistance strain gauge,different figures represent the strain gauge number)and R2+R4−R6−R8 was adopted.According to performance and calibration tests for the sensing device,the maximum interaction effect between the X and Y axes was 2.52%,and the output signal was stable and consistent.The standard error of the slope of the fitting equation of the downforce calculation model is 0.008.According to the field test,the average downforce of the gauge wheels was 1148,1017,843,and 713 N,at different sowing speeds of 6,8,10,and 12 km/h,respectively.The coefficients of variation were 0.40,0.41,0.62,and 0.71,respectively.The results indicate that the downforce fluctuation of the gauge wheels became more severe with increasing planting speed.Both the strain simulation analysis and field test verified that the measurement method is accurate and reliable,the performance of the sensing device is stable,the measurement method and sensing device meet the application requirements and lay a foundation for the research of accurate and stable control of downforce of no-till planter.