Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation s...Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation scheme based on limited backhaul capacity is designed to take a tradeoff between system throughput and fairness. Resource allocation of proportional fairness based on querying table is proposed. It updates RB allocation matrix when center cell has completed resource allocation and delivers the matrix to adjacent cells for their own RB allocation. Furthermore, Water-Filling algorithm based on adaptive water level(AWF) is used for power allocation to boost system fairness. In this paper, performance of downlink CoMP based on limited backhaul capacity and single-point transmission is contrasted, and results indicate that CoMP dramatically enhances system throughput and spectral efficiency. Moreover, AWF power allocation scheme obtains higher system fairness than conventional Water-Filling(WF) algorithm, although it gets slightly lower system throughput. Finally, this paper discussed that the system performance is partially affected by the percentage of CoMP resource.展开更多
This paper presents an optimized 64-bit parallel adder, Sparse-tree architecture enames low carry-merge fan-outs and inter-stage wiring complexity. Single-rail and semi-dynamic circuit improves operation speed. Simula...This paper presents an optimized 64-bit parallel adder, Sparse-tree architecture enames low carry-merge fan-outs and inter-stage wiring complexity. Single-rail and semi-dynamic circuit improves operation speed. Simulation results show that the proposed adder can operate at 485ps with power of 25.6mW in 0.18μm CMOS process. It achieves the goal of higher speed and lower power.展开更多
传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概...传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。展开更多
基金supported in part by the National Science and Technology Major Project of China under Grant 2013ZX03001024-003partially supported by the National Natural Science Foundation of China No.61201013
文摘Coordinated Multi-Point(CoMP) transmission is put forward in the Long Term Evolution-Advanced(LTE-A) system to improve both average and cell-edge throughput. In this paper, downlink CoMP(DL-CoMP) resource allocation scheme based on limited backhaul capacity is designed to take a tradeoff between system throughput and fairness. Resource allocation of proportional fairness based on querying table is proposed. It updates RB allocation matrix when center cell has completed resource allocation and delivers the matrix to adjacent cells for their own RB allocation. Furthermore, Water-Filling algorithm based on adaptive water level(AWF) is used for power allocation to boost system fairness. In this paper, performance of downlink CoMP based on limited backhaul capacity and single-point transmission is contrasted, and results indicate that CoMP dramatically enhances system throughput and spectral efficiency. Moreover, AWF power allocation scheme obtains higher system fairness than conventional Water-Filling(WF) algorithm, although it gets slightly lower system throughput. Finally, this paper discussed that the system performance is partially affected by the percentage of CoMP resource.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60273069, 60376018, 90207011, the National High Technology Development 863 Program of China under Grant No. 2002AAl10020, and the Adwnced Research Foundation of NUDT under Grant No. JC03-06-007.
文摘This paper presents an optimized 64-bit parallel adder, Sparse-tree architecture enames low carry-merge fan-outs and inter-stage wiring complexity. Single-rail and semi-dynamic circuit improves operation speed. Simulation results show that the proposed adder can operate at 485ps with power of 25.6mW in 0.18μm CMOS process. It achieves the goal of higher speed and lower power.
文摘传统电动汽车充电负荷建模通常采用对电动汽车个体进行抽样模拟的方式,未能从分析机理的角度描述电动汽车群体相互作用形成的宏观运行状态。为此,提出一种基于半动态交通均衡模型和组合荷电状态(combined states of the charge,CSOC)概率计算的电动汽车充电负荷概率分布计算方法。首先,分析电动汽车的交通特性和充电特性,并提出一种可行路径集构建方法;然后,引入交通均衡理论进行电动汽车空间分布建模,建立考虑随机效用的半动态交通均衡模型,实现宏观交通流均衡分配。进一步地,从理论层面分析电动汽车群的荷电状态变化,建立基于CSOC的充电负荷概率分布计算模型。最后,分别在13节点路网和实际大路网中验证所提方法的有效性,并分析了电动汽车渗透率和路网结构对充电负荷概率分布的影响。