Results of several Large Eddy Simulations (LES) this article. It is shown that the vegetation can make the flow of open channel flows with non-submerged vegetation are presented in structure in the mainstream direct...Results of several Large Eddy Simulations (LES) this article. It is shown that the vegetation can make the flow of open channel flows with non-submerged vegetation are presented in structure in the mainstream direction uniform for both supercritical and subcritical flows. For subcritical flows, the LES results of the ensemble-average of time-averaged velocity distributions at four vertical sections around a single plant are in good agreement with measurements. The velocity sees double peaks at the upper and lower positions of flows. For supercritical flows, the ensemble-average velocities see some discrepancy between LES and measurement results. Some secondary flow eddies appear near the single plant, and they just locate in the positions of the double peaks in stream-wise velocity profiles. It is also found that the vegetation drag coefficient deceases as the Froude number increases.展开更多
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper...Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.展开更多
The threat of cascading damage to downstream components caused by the light modulation intensification of laser repaired morphology on the surface of fused silica optics cannot be ignored in high-power laser systems.T...The threat of cascading damage to downstream components caused by the light modulation intensification of laser repaired morphology on the surface of fused silica optics cannot be ignored in high-power laser systems.This paper uses the angular spectrum diffraction theory based on the analysis of repaired surface morphology of CO_(2)laser rapid ablation mitigation to study the influence of different repaired morphologies on the downstream 355 nm laser transmission.Studies show that the arc-shaped laser processing lines on the repaired surface are formed by the residual height superposition of the material after laser scanning of two adjacent layers,and the short-pulse laser can substantially suppress the heat-affected zone of the repaired area.The offaxis ring caustic and on-axis hotspot are sequentially generated in the downstream modulated light fields of the conical repaired sites with different diameters.A secondary peak with modulation larger than 3 emerges downstream of the modulation curve.Meanwhile,the maximum modulation and the secondary peak increase with the diameter and cone angle of the repaired site,and the position of the secondary peak appears farther away from the rear surface.The modulations of three repaired sites with cone angles of 15°,20°,and 25°can finally be stabilized below 3.Overall,the downstream optics should be installed far away from the positions where the maximum modulation and the secondary peak emerge.Additionally,the maximum value and the secondary peak of the downstream light modulation of double repaired sites are larger than that of the single repaired site,and both rise as the repaired sizes increase.Thus,large-scale and large-size repairing of multiple surface damages in the same area should be avoided in the laser repairing of fused silica.展开更多
Silicon on insulator with highly uniform top Si is fabricated by co-implantation of H+and He+ions. Compared with the conventional ion-slicing process with H implantation only, the co-implanted specimens whose He depth...Silicon on insulator with highly uniform top Si is fabricated by co-implantation of H+and He+ions. Compared with the conventional ion-slicing process with H implantation only, the co-implanted specimens whose He depth is deeper than H profile have the top Si layer with better uniformity after splitting. In addition, the splitting occurs at the position that the maximum concentration peak of H overlaps with the secondary concentration peak of He after annealing. It is suggested that the H/He co-implantation technology is a promising approach for fabricating fully depleted silicon on insulator.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10972163, 51079102)the State Water Pollution Control and Management of Major Special Science and Technology (Grant No. 2008ZX07104-005)the Fundamental Rsearch Funds for the Central Universities (Grant N0. 2104001)
文摘Results of several Large Eddy Simulations (LES) this article. It is shown that the vegetation can make the flow of open channel flows with non-submerged vegetation are presented in structure in the mainstream direction uniform for both supercritical and subcritical flows. For subcritical flows, the LES results of the ensemble-average of time-averaged velocity distributions at four vertical sections around a single plant are in good agreement with measurements. The velocity sees double peaks at the upper and lower positions of flows. For supercritical flows, the ensemble-average velocities see some discrepancy between LES and measurement results. Some secondary flow eddies appear near the single plant, and they just locate in the positions of the double peaks in stream-wise velocity profiles. It is also found that the vegetation drag coefficient deceases as the Froude number increases.
基金supported by the National Natural Science Foundation of China[No.51978166]。
文摘Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 52175389)the Consolidation Program for Fundamental Research(Grant No.2019JCJQZDXX00)+6 种基金the Science Challenge Project(Grant No.TZ2016006-0503-01)the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2021E021)the China Postdoctoral Science Foundation(Grant No.2018T110288)the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)of China(Grant Nos.SKLRS201718A and SKLRS201803B)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201800623)the China Scholarship Council(Grant No.202006120158)。
文摘The threat of cascading damage to downstream components caused by the light modulation intensification of laser repaired morphology on the surface of fused silica optics cannot be ignored in high-power laser systems.This paper uses the angular spectrum diffraction theory based on the analysis of repaired surface morphology of CO_(2)laser rapid ablation mitigation to study the influence of different repaired morphologies on the downstream 355 nm laser transmission.Studies show that the arc-shaped laser processing lines on the repaired surface are formed by the residual height superposition of the material after laser scanning of two adjacent layers,and the short-pulse laser can substantially suppress the heat-affected zone of the repaired area.The offaxis ring caustic and on-axis hotspot are sequentially generated in the downstream modulated light fields of the conical repaired sites with different diameters.A secondary peak with modulation larger than 3 emerges downstream of the modulation curve.Meanwhile,the maximum modulation and the secondary peak increase with the diameter and cone angle of the repaired site,and the position of the secondary peak appears farther away from the rear surface.The modulations of three repaired sites with cone angles of 15°,20°,and 25°can finally be stabilized below 3.Overall,the downstream optics should be installed far away from the positions where the maximum modulation and the secondary peak emerge.Additionally,the maximum value and the secondary peak of the downstream light modulation of double repaired sites are larger than that of the single repaired site,and both rise as the repaired sizes increase.Thus,large-scale and large-size repairing of multiple surface damages in the same area should be avoided in the laser repairing of fused silica.
基金Supported by the National Natural Science Foundation of China under Grant No 61674159the Program of National Science and Technology Major Project under Grant No 2016ZX02301003+2 种基金the Shanghai Academic/Technology Research Leader under Grant Nos 16XD1404200 and 17XD1424500the Key Research Project of Frontier Science of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC021the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB30030000
文摘Silicon on insulator with highly uniform top Si is fabricated by co-implantation of H+and He+ions. Compared with the conventional ion-slicing process with H implantation only, the co-implanted specimens whose He depth is deeper than H profile have the top Si layer with better uniformity after splitting. In addition, the splitting occurs at the position that the maximum concentration peak of H overlaps with the secondary concentration peak of He after annealing. It is suggested that the H/He co-implantation technology is a promising approach for fabricating fully depleted silicon on insulator.