针对长短时记忆网络(Long Short Term Memory,LSTM)处理大数据集时运行时间长、存在维数灾难的问题,提出基于能量熵和CL-LSTM(Long Short Term Memory Network with Center Loss)的智能故障诊断模型。利用自适应白噪声的完整集合经验模...针对长短时记忆网络(Long Short Term Memory,LSTM)处理大数据集时运行时间长、存在维数灾难的问题,提出基于能量熵和CL-LSTM(Long Short Term Memory Network with Center Loss)的智能故障诊断模型。利用自适应白噪声的完整集合经验模态分解对原始信号进行分解;结合相关系数筛选IMF分量并计算其能量熵作为新样本输入到LSTM中,增强了样本间的差异性,减小了数据维度。将中心损失引入Softmax损失中,使类内距离更小,进一步提高分类精度。利用西储大学轴承数据集进行实验,验证了所提方法在识别滚动轴承故障状态时准确率高、稳定性好。展开更多
文摘针对不同型号滚动轴承监测信号之间特征分布差异大、故障数据样本少,导致轴承故障精度低的问题,提出了一种基于改进交替迁移学习的滚动轴承故障诊断算法。为了充分发挥卷积神经网络(convolutional neural network, CNN)对二维数据优秀的特征提取能力,首先将一维振动信号转化为二维图像,输入到深度卷积神经网络中学习;其次,为了减少源域与目标域数据间的特征分布差异,提出了改进的交替迁移学习(improved alternately transfer learning, IATL),通过交替计算域间的CORAL损失函数和最大均值差异(maximum mean discrepancy, MMD)损失函数,并反向传播更新各层网络权重与偏置参数,以实现变工况、跨轴承型号和小故障样本条件下轴承特征迁移适配;最后,在全连接层使用Softmax函数对目标域数据进行故障诊断。为了验证该算法的有效性,采用凯斯西储大学(Case Western Reserve University, CWRU)的滚动轴承数据集进行了迁移试验验证。结果表明,与仅计算CORAL损失函数和MMD损失函数等算法对比可知,该算法有效地减少了领域数据之间的特征分布差异,具有较高的故障分类准确率。
文摘针对长短时记忆网络(Long Short Term Memory,LSTM)处理大数据集时运行时间长、存在维数灾难的问题,提出基于能量熵和CL-LSTM(Long Short Term Memory Network with Center Loss)的智能故障诊断模型。利用自适应白噪声的完整集合经验模态分解对原始信号进行分解;结合相关系数筛选IMF分量并计算其能量熵作为新样本输入到LSTM中,增强了样本间的差异性,减小了数据维度。将中心损失引入Softmax损失中,使类内距离更小,进一步提高分类精度。利用西储大学轴承数据集进行实验,验证了所提方法在识别滚动轴承故障状态时准确率高、稳定性好。