In network service systems, satisfying quality of service (QoS) is one of the main objectives. Admission control and resource allocation strategy can be used to guarantee the QoS requirement. Based on partially observ...In network service systems, satisfying quality of service (QoS) is one of the main objectives. Admission control and resource allocation strategy can be used to guarantee the QoS requirement. Based on partially observable Markov decision processes (POMDPs), this paper proposes a novel admission control model for video on demand (VOD) service systems with elastic QoS. Elastic QoS is also considered in resource allocation strategy. Policy gradient algorithm is often available to find the solution of POMDP problems, with a satisfactory convergence rate. Through numerical examples, it can be shown that the proposed admission control strategy has better performance than complete admission control strategy.展开更多
Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected respo...Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected response time is highly variable and it is usually longer than the value of SLA.So,it leads to a poor resource utilization and unnecessary servers migration.We develop a framework for customer-driven dynamic resource allocation in cloud computing.Termed CDSMS(customer-driven service manage system),and the framework’s contributions are twofold.First,it can reduce the total migration times by adjusting the value of parameters of response time dynamically according to customers’profiles.Second,it can choose a best resource provision algorithm automatically in different scenarios to improve resource utilization.Finally,we perform a serious experiment in a real cloud computing platform.Experimental results show that CDSMS provides a satisfactory solution for the prediction of expected response time and the interval period between two tasks and reduce the total resource usage cost.展开更多
基金supported by National Natural Science Foundation of China (Nos. 61174124, 61233003 and 60935001)National High Technology Research and Development Program of China (863 Program) (No. 2011AA01A102)
文摘In network service systems, satisfying quality of service (QoS) is one of the main objectives. Admission control and resource allocation strategy can be used to guarantee the QoS requirement. Based on partially observable Markov decision processes (POMDPs), this paper proposes a novel admission control model for video on demand (VOD) service systems with elastic QoS. Elastic QoS is also considered in resource allocation strategy. Policy gradient algorithm is often available to find the solution of POMDP problems, with a satisfactory convergence rate. Through numerical examples, it can be shown that the proposed admission control strategy has better performance than complete admission control strategy.
基金Supported by the National Natural Science Foundation of China(61272454)
文摘Conventional resource provision algorithms focus on how to maximize resource utilization and meet a fixed constraint of response time which be written in service level agreement(SLA).Unfortunately,the expected response time is highly variable and it is usually longer than the value of SLA.So,it leads to a poor resource utilization and unnecessary servers migration.We develop a framework for customer-driven dynamic resource allocation in cloud computing.Termed CDSMS(customer-driven service manage system),and the framework’s contributions are twofold.First,it can reduce the total migration times by adjusting the value of parameters of response time dynamically according to customers’profiles.Second,it can choose a best resource provision algorithm automatically in different scenarios to improve resource utilization.Finally,we perform a serious experiment in a real cloud computing platform.Experimental results show that CDSMS provides a satisfactory solution for the prediction of expected response time and the interval period between two tasks and reduce the total resource usage cost.