Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaot...Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.展开更多
This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is differ...This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.展开更多
The dynamics behavior of a synthetic gene network controlled by random noise is investigated using a model proposed recently. The phenomena of noise induced oscillation (NIO) of the protein concentrations and internal...The dynamics behavior of a synthetic gene network controlled by random noise is investigated using a model proposed recently. The phenomena of noise induced oscillation (NIO) of the protein concentrations and internal signal stochastic resonance (SR) are studied by com-puter simulation. We also find that there exists an optimal noise intensity that can most favor the occurrence of effective oscillation (EO). Finally we discuss the potential constructive roles of SR on gene expression systems.展开更多
In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and m...In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is funda- mentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engi- neering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metro- politan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced con- crete high-rise building using background vibration noise.By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seis- mology and earthquake engineering projects for seismic hazard mitigation in urban areas.展开更多
基金the National Natural Science Foundation of China (10432010,10702002,10772101,10802012)the National High Technology Research and Development Program (2007AA02Z310)
文摘Recent advances in the experimental and theoretical study of dynamics of neuronal electrical firing activities are reviewed. Firstly, some experimental phenomena of neuronal irregular firing patterns, especially chaotic and stochastic firing patterns, are presented, and practical nonlinear time analysis methods are introduced to distinguish deterministic and stochastic mechanism in time series. Secondly, the dynamics of electrical firing activities in a single neuron is concerned, namely, fast-slow dynamics analysis for classification and mechanism of various bursting patterns, one- or two-parameter bifurcation analysis for transitions of firing patterns, and stochastic dynamics of firing activities (stochastic and coherence resonances, integer multiple and other firing patterns induced by noise, etc.). Thirdly, different types of synchronization of coupled neurons with electrical and chemical synapses are discussed. As noise and time delay are inevitable in nervous systems, it is found that noise and time delay may induce or enhance synchronization and change firing patterns of coupled neurons. Noise-induced resonance and spatiotemporal patterns in coupled neuronal networks are also demonstrated. Finally, some prospects are presented for future research. In consequence, the idea and methods of nonlinear dynamics are of great significance in exploration of dynamic processes and physiological functions of nervous systems.
基金supported by the the National Natural Science Foundation of China(Grant Nos.11372247&11472224)the NPU Foundation for Undergraduate Graduation Design
文摘This paper aims to investigate the stochastic resonance (SR) in an FitzHugh-Nagumo (FHN) model with an additive LEvy noise numerically. The non-Gaussian LEvy noise is a kind of general random noise which is different from the usual Gaussian noise, and it has small fluctuations with the unpredictable jumps to describe the random fluctuations in an FHN model. SR is determined by the signal-to-noise ratio (SNR), and the numerical simulation results show the occurrence of the SR phenomena in the given FHN system. The influence of various parameters of the LEvy noise and the FHN model on the SR will be exam- ined, and some mechanisms of the LEvy noise-induced SR are presented which are different from those of the Gaussian noise.
基金the National Natural Science Foundation of China(Grant Nos.20203017&20433050) the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD).
文摘The dynamics behavior of a synthetic gene network controlled by random noise is investigated using a model proposed recently. The phenomena of noise induced oscillation (NIO) of the protein concentrations and internal signal stochastic resonance (SR) are studied by com-puter simulation. We also find that there exists an optimal noise intensity that can most favor the occurrence of effective oscillation (EO). Finally we discuss the potential constructive roles of SR on gene expression systems.
文摘In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is funda- mentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engi- neering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metro- politan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced con- crete high-rise building using background vibration noise.By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seis- mology and earthquake engineering projects for seismic hazard mitigation in urban areas.