针对声发射检测齿轮箱轴承故障问题,提出基于奇异值分解(Singular Value Decomposition,SVD)与Fast Kurtogram算法的故障诊断方法。通过奇异值分解提高信号信噪比;将Fast Kurtogram算法用于故障信号共振解调带通滤波器参数确定,结合能...针对声发射检测齿轮箱轴承故障问题,提出基于奇异值分解(Singular Value Decomposition,SVD)与Fast Kurtogram算法的故障诊断方法。通过奇异值分解提高信号信噪比;将Fast Kurtogram算法用于故障信号共振解调带通滤波器参数确定,结合能量算子解调包络谱,成功提取齿轮箱轴承内外圈故障特征,有效改善传统共振解调中人工选择滤波器参数的不确定性。通过仿真与实验数据验证所提方法的有效性。展开更多
表征滚动轴承故障特征的周期性冲击,特别是在故障早期阶段,常常被噪声和其它结构振动所淹没,从而难以辨别。共振解调被广泛用于滚动轴承故障冲击特征提取,但其滤波频带的参数选择常需要一定的先验知识。针对现有的频带优化方法的不足,...表征滚动轴承故障特征的周期性冲击,特别是在故障早期阶段,常常被噪声和其它结构振动所淹没,从而难以辨别。共振解调被广泛用于滚动轴承故障冲击特征提取,但其滤波频带的参数选择常需要一定的先验知识。针对现有的频带优化方法的不足,本文提出一种基于包络谱谱峰因子和复平移Morlet小波滤波的自适应共振解调方法-自适应包络谱谱峰因子算法。包络谱谱峰因子(Crest factor of envelope spectrum,CE)定义为包络谱在一定范围内的最大值和有效值之比,能有效度量信号中周期性冲击强弱,结合粒子群优化算法的寻优特性,对Morlet小波滤波器中心频率和带宽参数进行优化。将包络谱谱峰因子作为适应度函数来比较不同参数组合下的滤波效果,根据适应度函数值最大原则选取Morlet小波滤波器参数。仿真信号、实验信号以及工程实际信号分析验证了该方法在共振解调最优频带选取中的有效性和优越性。展开更多
文摘针对声发射检测齿轮箱轴承故障问题,提出基于奇异值分解(Singular Value Decomposition,SVD)与Fast Kurtogram算法的故障诊断方法。通过奇异值分解提高信号信噪比;将Fast Kurtogram算法用于故障信号共振解调带通滤波器参数确定,结合能量算子解调包络谱,成功提取齿轮箱轴承内外圈故障特征,有效改善传统共振解调中人工选择滤波器参数的不确定性。通过仿真与实验数据验证所提方法的有效性。
文摘表征滚动轴承故障特征的周期性冲击,特别是在故障早期阶段,常常被噪声和其它结构振动所淹没,从而难以辨别。共振解调被广泛用于滚动轴承故障冲击特征提取,但其滤波频带的参数选择常需要一定的先验知识。针对现有的频带优化方法的不足,本文提出一种基于包络谱谱峰因子和复平移Morlet小波滤波的自适应共振解调方法-自适应包络谱谱峰因子算法。包络谱谱峰因子(Crest factor of envelope spectrum,CE)定义为包络谱在一定范围内的最大值和有效值之比,能有效度量信号中周期性冲击强弱,结合粒子群优化算法的寻优特性,对Morlet小波滤波器中心频率和带宽参数进行优化。将包络谱谱峰因子作为适应度函数来比较不同参数组合下的滤波效果,根据适应度函数值最大原则选取Morlet小波滤波器参数。仿真信号、实验信号以及工程实际信号分析验证了该方法在共振解调最优频带选取中的有效性和优越性。