A series of high solid content(30 wt%)epoxy resin(EP)composite coatings reinforced with differently sized cubic boron nitride(CBN)particles were fabricated successfully on 304 L stainless steel.Polydopamine(PDA)was us...A series of high solid content(30 wt%)epoxy resin(EP)composite coatings reinforced with differently sized cubic boron nitride(CBN)particles were fabricated successfully on 304 L stainless steel.Polydopamine(PDA)was used to improve the dispersibility of CBN particles in EP.The structural and morphological features of the CBN particles and the composite coatings were characterized by Raman spectroscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Moreover,a UMT-3 tribometer and surface profiler were used to investigate the tribological behaviors of the as-prepared composite coatings.Electrochemical impedance spectroscopy(EIS)and Tafel analysis were used to investigate the coatings'anti-corrosion performance.The results demonstrated that the CBN fillers could effectively enhance the tribological and anti-corrosion properties of the EP composite coatings.In addition,when the additive proportion of the microsized(5μm)and nanosized(550 nm)CBN particles was 1:1,the tribological property of the EP composite coatings was optimal for dry sliding,which was attributed to the load carrying capability of the microsized CBN particles and the toughening effect of the nanosized CBN particles.However,when the additive proportion of the microsized and nanosized CBN particles was 2:1,the tribology and corrosion resistance performance were optimal in seawater conditions.We ascribed this to the load-carrying capacity of the microparticles,which played a more important role under the seawater lubrication condition,and the more compact structure,which improved the electrolyte barrier ability for the composite coatings.展开更多
为探索制备低明度热反射颜料的方法,选取不同粒径的硅粉与钛镍黄(Ti Ni Y)混合,再将混合颜料按一定的比例与有机硅树脂混合,制得建筑节能涂料。考察了硅粉粒径及其与钛镍黄的配比对涂层颜色及热反射性能的影响,利用X射线衍射仪、扫描电...为探索制备低明度热反射颜料的方法,选取不同粒径的硅粉与钛镍黄(Ti Ni Y)混合,再将混合颜料按一定的比例与有机硅树脂混合,制得建筑节能涂料。考察了硅粉粒径及其与钛镍黄的配比对涂层颜色及热反射性能的影响,利用X射线衍射仪、扫描电镜、色差仪和紫外/可见光/近红外分光光度计表征了原料的相组成及形貌,以及涂层的Lab色空间值和太阳光反射率。随着硅粉粒径减小,纯硅粉涂层的明度和太阳光反射率均逐渐升高,而混合颜料涂层的明度和太阳光反射率反而降低;随着硅粉含量增加,涂层的明度持续降低,但太阳光反射率下降到一定程度后不再降低。由某市售白色隔热底层(厚1.00 mm)与Ti Ni Y–Si混合颜料涂层(厚0.05 mm)组成的双层结构涂层的近红外反射率由Ti Ni Y–Si混合颜料单层涂层(厚1.00 mm)的42.41%升高到47.93%。可见硅粉能在降低钛镍黄涂层明度的同时,使反射率保持在一个较高的水平,而采用双层热反射涂层结构既可获得低明度,又能维持一定的热反射能力。展开更多
基金the National Natural Science Foundation of China(No.51775540)Key Research Program of Frontier Sciences of the Chinese Academy of Science(No.QYZDY-SSW-JSC009)the Youth Innovation Promotion Association,CAS(No.2017338)。
文摘A series of high solid content(30 wt%)epoxy resin(EP)composite coatings reinforced with differently sized cubic boron nitride(CBN)particles were fabricated successfully on 304 L stainless steel.Polydopamine(PDA)was used to improve the dispersibility of CBN particles in EP.The structural and morphological features of the CBN particles and the composite coatings were characterized by Raman spectroscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Moreover,a UMT-3 tribometer and surface profiler were used to investigate the tribological behaviors of the as-prepared composite coatings.Electrochemical impedance spectroscopy(EIS)and Tafel analysis were used to investigate the coatings'anti-corrosion performance.The results demonstrated that the CBN fillers could effectively enhance the tribological and anti-corrosion properties of the EP composite coatings.In addition,when the additive proportion of the microsized(5μm)and nanosized(550 nm)CBN particles was 1:1,the tribological property of the EP composite coatings was optimal for dry sliding,which was attributed to the load carrying capability of the microsized CBN particles and the toughening effect of the nanosized CBN particles.However,when the additive proportion of the microsized and nanosized CBN particles was 2:1,the tribology and corrosion resistance performance were optimal in seawater conditions.We ascribed this to the load-carrying capacity of the microparticles,which played a more important role under the seawater lubrication condition,and the more compact structure,which improved the electrolyte barrier ability for the composite coatings.
文摘为探索制备低明度热反射颜料的方法,选取不同粒径的硅粉与钛镍黄(Ti Ni Y)混合,再将混合颜料按一定的比例与有机硅树脂混合,制得建筑节能涂料。考察了硅粉粒径及其与钛镍黄的配比对涂层颜色及热反射性能的影响,利用X射线衍射仪、扫描电镜、色差仪和紫外/可见光/近红外分光光度计表征了原料的相组成及形貌,以及涂层的Lab色空间值和太阳光反射率。随着硅粉粒径减小,纯硅粉涂层的明度和太阳光反射率均逐渐升高,而混合颜料涂层的明度和太阳光反射率反而降低;随着硅粉含量增加,涂层的明度持续降低,但太阳光反射率下降到一定程度后不再降低。由某市售白色隔热底层(厚1.00 mm)与Ti Ni Y–Si混合颜料涂层(厚0.05 mm)组成的双层结构涂层的近红外反射率由Ti Ni Y–Si混合颜料单层涂层(厚1.00 mm)的42.41%升高到47.93%。可见硅粉能在降低钛镍黄涂层明度的同时,使反射率保持在一个较高的水平,而采用双层热反射涂层结构既可获得低明度,又能维持一定的热反射能力。