By employing the 6.7μm satellite vapor cloud images and NCEP/NCAR 1°×1° reanalysis datasets, the characteristics and mechanism of the dry intrusion, as well as its impacts on the low vortex precipita- ...By employing the 6.7μm satellite vapor cloud images and NCEP/NCAR 1°×1° reanalysis datasets, the characteristics and mechanism of the dry intrusion, as well as its impacts on the low vortex precipita- tion at the Meiyu front are explored in this paper. It is found that the formation,development and main- tenance of the low vortex precipitation at the Meiyu front are closely related to the evolution of the dry intrusion. The dry intrusion is characterized by high potential vorticity (PV), low humidity and cold air. The dry intrusion exhibits as an obvious dark zone on vapor cloud images, an area in which atmos- pheric relative humidity is lower than 60%. However, the features of the dry intrusion on the vapor im- ages are clearer than that of the humidity field, for the former is the digital vapor cloud images with high temporal and spatial resolution, and it can be used to explore the finer characteristics of the develop- ment, evolution and supplement of the intrusion during the development of the low vortex. The dry intrusion impacts accompanying the low vortex precipitation at the Meiyu front come from all levels of the troposphere, with the strongest intrusion located at the upper troposphere. The dry and cold air intrudes the vicinity of the low vortex from the upper isentropic surface to the lower one, slanting eastward from lower to higher level. The low vortex precipitation region is usually situated in front of the dry intrusion where the relative humidity gradient is higher. The research also reveals that the mechanism of the dry intrusion is that the high potential vorticity descends from the upper troposphere to the lower level, therefore, the dry intrusion can be used as an important index of the high PV forcing. To the west of the low vortex precipitation, the upper level northerlies descend across the isentropic surface, then the dry cold advection can trigger the instable development in the mid-low troposphere. The dry intrusion enhances the low vortex precipitation. Meanwhile, because of the 展开更多
[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluati...[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.展开更多
Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the...Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the plant water-nutrition uptake and improve the decisions of efficient irrigation management and other inputs for effective soybean production. Field studies of soybean sap flow took place in 2017-2021 at Marianna, Arkansas using heat balance stem flow gauges to measure the sap flow during the reproductive growth stages R3-R7. Plant water uptake was measured using the lysimeter-container method. The uniform sap flow-based hydraulic system in the soil-root-stem-leaf pathway created negative water tensions with osmotic processes and water surface tensions in stomata cells as water evaporation layers increase are the mechanism of the plant water uptake. Any changes the factors like soil water tension, solar radiation, or air relative humidity immediately, within a few seconds, affect the system’s balance and cause simultaneously appropriate reactions in different parts of the system. The plant water use model was created from plant emergence, vegetative to final reproductive growth stages depending on soil-weather conditions, plant morphology, and biomass. The main factors of the model include solar radiation, air temperature, and air relative humidity. The effective sap flow uptake occurs around 0.8 KPa VPD. Further research is needed to optimize the model’s factors to increase the plant growth dynamics and yield productivity.展开更多
Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple...Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.展开更多
The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on t...The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on the characteristics of phenomenon of thermal expansion of bodies being in the state of aggregation. A critical approach to the existing law of the linear thermal expansion is given. The paper presents an adequate approach to this considered phenomenon. The description provides parametric and functional characteristics of this phenomenon. The relationships of the coefficients of linear expansion on temperature for particular interstate zones, as well as the initial coefficients related to these zones, are presented. In the summary a synthesis of all actions and considerations with the directions to the adequate knowledge with advantage on the subjected phenomenon has been performed. It regards also to the latest thermal characteristics of solids, referred to the phase transformations. All they are realized by dilatometric studies together with determination of curves of thermal expansions of solids.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 40205008)Heavy Rain Opening Foundation (Grant No. IHR2005K04)the National Basic Research Program of China (Grant No.2006CB403601)
文摘By employing the 6.7μm satellite vapor cloud images and NCEP/NCAR 1°×1° reanalysis datasets, the characteristics and mechanism of the dry intrusion, as well as its impacts on the low vortex precipita- tion at the Meiyu front are explored in this paper. It is found that the formation,development and main- tenance of the low vortex precipitation at the Meiyu front are closely related to the evolution of the dry intrusion. The dry intrusion is characterized by high potential vorticity (PV), low humidity and cold air. The dry intrusion exhibits as an obvious dark zone on vapor cloud images, an area in which atmos- pheric relative humidity is lower than 60%. However, the features of the dry intrusion on the vapor im- ages are clearer than that of the humidity field, for the former is the digital vapor cloud images with high temporal and spatial resolution, and it can be used to explore the finer characteristics of the develop- ment, evolution and supplement of the intrusion during the development of the low vortex. The dry intrusion impacts accompanying the low vortex precipitation at the Meiyu front come from all levels of the troposphere, with the strongest intrusion located at the upper troposphere. The dry and cold air intrudes the vicinity of the low vortex from the upper isentropic surface to the lower one, slanting eastward from lower to higher level. The low vortex precipitation region is usually situated in front of the dry intrusion where the relative humidity gradient is higher. The research also reveals that the mechanism of the dry intrusion is that the high potential vorticity descends from the upper troposphere to the lower level, therefore, the dry intrusion can be used as an important index of the high PV forcing. To the west of the low vortex precipitation, the upper level northerlies descend across the isentropic surface, then the dry cold advection can trigger the instable development in the mid-low troposphere. The dry intrusion enhances the low vortex precipitation. Meanwhile, because of the
基金Supported by Key Projects in the National Science &Technology Pillar Program (2007BAD30B05)Key Project of Science and Tech-nology Department of Guangxi Province of China (0782004-5)the Program for Postgraduates Research Innovattion in GX. Univer-sity (105930903049)~~
文摘[Objective] The aim was to explore the effects of water stress on leaf water and chlorophyll fluorescence parameters of sugarcane seedling,as well as to provide basis for the study on sugarcane production and evaluation. [Method] Seven different sugarcane varieties were studied at the seedling stage under drought stress,and the changes of leaf water and chlorophyll fluorescence parameters under stress conditions were detected. [Result] leaf water potential,leaf relative water content and soil relative water content showed a certain amount of internal relationship,the sugarcane varieties that had more tolerant to drought had higher utilization rate of soil water; the correlation analysis and factor analysis suggested that the survival rate at seedling stage under drought stress,Fv/Fm,leaf water potential and relative water content could be used as drought resistance evaluation indicators. [Conclusion] As a relatively independent influencing factor,water potential had dominating effect on drought resistance,and the reliability of Fv/Fm as drought resistance evaluation indicator had been verified.
文摘Soybean (Glycine max. (L.) Merr.) sap flow during the growth stages in relation to soil moisture, nutrition, and weather conditions determine the plant development. Modeling this process helps to better understand the plant water-nutrition uptake and improve the decisions of efficient irrigation management and other inputs for effective soybean production. Field studies of soybean sap flow took place in 2017-2021 at Marianna, Arkansas using heat balance stem flow gauges to measure the sap flow during the reproductive growth stages R3-R7. Plant water uptake was measured using the lysimeter-container method. The uniform sap flow-based hydraulic system in the soil-root-stem-leaf pathway created negative water tensions with osmotic processes and water surface tensions in stomata cells as water evaporation layers increase are the mechanism of the plant water uptake. Any changes the factors like soil water tension, solar radiation, or air relative humidity immediately, within a few seconds, affect the system’s balance and cause simultaneously appropriate reactions in different parts of the system. The plant water use model was created from plant emergence, vegetative to final reproductive growth stages depending on soil-weather conditions, plant morphology, and biomass. The main factors of the model include solar radiation, air temperature, and air relative humidity. The effective sap flow uptake occurs around 0.8 KPa VPD. Further research is needed to optimize the model’s factors to increase the plant growth dynamics and yield productivity.
基金partially supported by the National Science Foundation under Grant No.NSF DMS-1054115a Sloan Foundation Research Fellowship
文摘Compressible (full) potential flow is expressed as an equivalent first-order system of conservation laws for density ρ and velocity v. Energy E is shown to be the only nontrivial entropy for that system in multiple space dimensions, and it is strictly convex in ρ, v if and only if |v| 〈 c. For motivation some simple variations on the relative entropy theme of Dafer- mos/DiPerna are given, for example that smooth regions of weak entropy solutions shrink at finite speed, and that smooth solutions force solutions of singular entropy-compatible per- turbations to converge to them. We conjecture that entropy weak solutions of compressible potential flow are unique, in contrast to the known counterexamples for the Euler equations.
文摘The work covers a novel approach to the description of the phenomenon of thermal expansion of solids. The reason for undertaking the scientific quest is presented to follow with the analysis of existing knowledge on the characteristics of phenomenon of thermal expansion of bodies being in the state of aggregation. A critical approach to the existing law of the linear thermal expansion is given. The paper presents an adequate approach to this considered phenomenon. The description provides parametric and functional characteristics of this phenomenon. The relationships of the coefficients of linear expansion on temperature for particular interstate zones, as well as the initial coefficients related to these zones, are presented. In the summary a synthesis of all actions and considerations with the directions to the adequate knowledge with advantage on the subjected phenomenon has been performed. It regards also to the latest thermal characteristics of solids, referred to the phase transformations. All they are realized by dilatometric studies together with determination of curves of thermal expansions of solids.