‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few stud...‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few studies to evaluate and compare the level of co-control of CO_(2) and local air pollutants in cities year.The present study proposed qualitative and quantitative methods to evaluate the level of co-control of CO_(2)and three local air pollutant(SO_(2).NOX,and particulate matter PM)emissions in key environmental protection cities in China over two periods(2012-2015 and 2015-2018).Statistical analysis found that,though three local air pollutant emissions positively correlated with CO_(2) emission,no significantly positive correlation was found between local air pollutants emission reductions and CO_(2) emission reductions,indicating that co-control effects were poor in general.By using the co-control effect coordinate system,qualitative evaluation showed that less than half of the sample cities could achieve co-control of the total amount of CO_(2) and local air pollutants.By employing the indicator of emission reduction equivalence(EReq),quantitative evaluation showed that the co-control level of the sample cities improved in 2015-2018 compared with 2012-2015.Further regression analysis showed that,reducing coal consumption and economic development significantly enhanced the co-control performance of the observed cities.The present case study proved that the proposed methods for evaluation and comparison of the city co-control performance works well,and can be used in other countries and regions to promote global cities racing to carbon and local air pollutants co-control.展开更多
A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), ...A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), trans- mission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgpd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/ Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improve- ment over most AEMFCs reported in the literature to date.展开更多
A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 ...A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 to screen suitable addition of praseodymium oxide. These samples were characterized by XRD, N2-BET, NH3-TPD, NO-TPD, Py-IR, H2-TPR, Raman spectra and XPS, respectively. Results showed the optimal catalyst with the Pr/Ce molar ratio of 0.10 exhibited more than 90% NO conversion in a wide temperature range of 290-425℃ under GHSV of 5000 h i. The number of Lewis acid sites and the chemisorbed oxygen concentration of the catalysts would increase with the Pr incorporation, which was favorable for the excellent catalytic performance. In addition, the Pr incorporation inhibited growth of the Al2O3 crystal particles and led to the lattice expansion of CeO2, which increased catalytic activity. The results implied that the higher chemisorbed oxygen concentrations and the more Lewis acid sites were conductive to obtain the excellent SCR activity.展开更多
基金This work was co-supported by The Energy Foundation project‘Co-control effect assessment of deep decarbonization measures and the co-control path way in China'(G-1809-28536)the Major Projects of the National Social Science Foundation‘Study on action plan for peaking carbon emissions by 2030 in China'(21ZDA085).
文摘‘Co-control',or synergistically reducing CO_(2)and local air polluta nt emissions,is an important strategy for cities to achieve'low carb on'and'blue sky'simultaneously.However,there were few studies to evaluate and compare the level of co-control of CO_(2) and local air pollutants in cities year.The present study proposed qualitative and quantitative methods to evaluate the level of co-control of CO_(2)and three local air pollutant(SO_(2).NOX,and particulate matter PM)emissions in key environmental protection cities in China over two periods(2012-2015 and 2015-2018).Statistical analysis found that,though three local air pollutant emissions positively correlated with CO_(2) emission,no significantly positive correlation was found between local air pollutants emission reductions and CO_(2) emission reductions,indicating that co-control effects were poor in general.By using the co-control effect coordinate system,qualitative evaluation showed that less than half of the sample cities could achieve co-control of the total amount of CO_(2) and local air pollutants.By employing the indicator of emission reduction equivalence(EReq),quantitative evaluation showed that the co-control level of the sample cities improved in 2015-2018 compared with 2012-2015.Further regression analysis showed that,reducing coal consumption and economic development significantly enhanced the co-control performance of the observed cities.The present case study proved that the proposed methods for evaluation and comparison of the city co-control performance works well,and can be used in other countries and regions to promote global cities racing to carbon and local air pollutants co-control.
文摘A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), trans- mission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm2 and a mass activity of 0.59 A/mgpd at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher in-situ alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm2 operating on H2/O2 and 700 MW/cm2 operating on H2/Air (CO2-free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/ Vulcan catalyst also exhibited high stability during a short-term, in-situ AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improve- ment over most AEMFCs reported in the literature to date.
文摘A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 to screen suitable addition of praseodymium oxide. These samples were characterized by XRD, N2-BET, NH3-TPD, NO-TPD, Py-IR, H2-TPR, Raman spectra and XPS, respectively. Results showed the optimal catalyst with the Pr/Ce molar ratio of 0.10 exhibited more than 90% NO conversion in a wide temperature range of 290-425℃ under GHSV of 5000 h i. The number of Lewis acid sites and the chemisorbed oxygen concentration of the catalysts would increase with the Pr incorporation, which was favorable for the excellent catalytic performance. In addition, the Pr incorporation inhibited growth of the Al2O3 crystal particles and led to the lattice expansion of CeO2, which increased catalytic activity. The results implied that the higher chemisorbed oxygen concentrations and the more Lewis acid sites were conductive to obtain the excellent SCR activity.