In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具...设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具误差的 Ishikawa 迭代序列强收敛到方 程 Tx = f 的唯一解。本文结果推广和发展了现有的相应结果。展开更多
Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β n...Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.展开更多
It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Ban...It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G&teaux differentiable norm. Demicompactness condition imposed in such results is dispensed with. Furthermore, Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed. Our theorems improve, generalize, unify and extend several recently announced results.展开更多
Let X be a uniformly smooth real Banach space. tri T:X→X be a con-tinuous and strongly accretive operator. For a given f∈X,define S: X→X by 1)satisfying: Moreover, suppose that {Sxn} and {Syn} are bounded, then {Xn...Let X be a uniformly smooth real Banach space. tri T:X→X be a con-tinuous and strongly accretive operator. For a given f∈X,define S: X→X by 1)satisfying: Moreover, suppose that {Sxn} and {Syn} are bounded, then {Xn} converges strongly to the unique fixed point of S.展开更多
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
文摘设 X 是一实的 Banach 空间,T : X → X 是一 Lipschitz 的增生算子。本文证明了具误差 的 Ishikawa 迭代序列强收敛到方程 x + Tx = f 的唯一解;并得一个一般的收敛估计式。 若 T : X → X 是一 Lipschitz 的强增生算子,则具误差的 Ishikawa 迭代序列强收敛到方 程 Tx = f 的唯一解。本文结果推广和发展了现有的相应结果。
文摘Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.
文摘It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G&teaux differentiable norm. Demicompactness condition imposed in such results is dispensed with. Furthermore, Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed. Our theorems improve, generalize, unify and extend several recently announced results.
文摘Let X be a uniformly smooth real Banach space. tri T:X→X be a con-tinuous and strongly accretive operator. For a given f∈X,define S: X→X by 1)satisfying: Moreover, suppose that {Sxn} and {Syn} are bounded, then {Xn} converges strongly to the unique fixed point of S.