A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The...A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.展开更多
文摘A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.