Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simul...Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.展开更多
Based on the threshold-arithmetic algebraic system which has been proposed for current-mode circuit design,we propose a systematic methodology for emitter-couple logic(ECL)circuit design.Compared to the traditional me...Based on the threshold-arithmetic algebraic system which has been proposed for current-mode circuit design,we propose a systematic methodology for emitter-couple logic(ECL)circuit design.Compared to the traditional methodologies and the theory of differential current switches,the proposed methodology uses the HE map and the characteristics of the internal current signals of ECL circuits to determine the external voltage signals.The operations of the HE map are direct and simple,and the current signals are easy to add or subtract,which make this methodology more flexible,direct,and effective,and make it possible to design arbitrary binary and multi-valued logic functions.Two example circuits are designed and simulated by HSPICE using 0.18μm TSMC technology.Simulation results confirm the validity of the proposed methodology.展开更多
基金Supported by the National Natural Science Foundation of China (No.60372004) and Natural Science Foundation of Guangdong Province (No.20820)
文摘Discrete-time chaotic circuit implementations of a tent map and a Bernoulli map using switched-current (SI) techniques are presented. The two circuits can be constructed with 16 MOSFET's and 2 capacitors. The simulations and experiments built with commercially available IC's for the circuits have demonstrated the validity of the circuit designs. The experiment results also indicate that the proposed circuits are integrable by a standard CMOS technology. The implementations are useful for studies and applications of chaos.
基金Project(No.61271124)supported by the National Natural ScienceFoundation of China
文摘Based on the threshold-arithmetic algebraic system which has been proposed for current-mode circuit design,we propose a systematic methodology for emitter-couple logic(ECL)circuit design.Compared to the traditional methodologies and the theory of differential current switches,the proposed methodology uses the HE map and the characteristics of the internal current signals of ECL circuits to determine the external voltage signals.The operations of the HE map are direct and simple,and the current signals are easy to add or subtract,which make this methodology more flexible,direct,and effective,and make it possible to design arbitrary binary and multi-valued logic functions.Two example circuits are designed and simulated by HSPICE using 0.18μm TSMC technology.Simulation results confirm the validity of the proposed methodology.