为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这...为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这些决策树进行聚类。从每一类中选出一棵AUC最大的决策树组成新的随机森林模型,从而达到提升传统随机森林算法分类精度的目的。通过UCI(university of Californialrvine)数据集的实验表明,改进后的随机森林算法在分类精度上最大提高了2.91%。展开更多
将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定...将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定的协作用户个数K和采样点数N,首先推导了最大最小特征值之差的精确概率密度函数(Probability Density Function,PDF)和累积分布函数(Cumulative Distribution Function,CDF),然后利用该分布函数设计了所提算法的判决阈值。理论分析表明,EMMED算法的判决阈值较已有的渐进最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference,AMMED)检测更为精确,算法无需主用户信号特征并且能够对抗噪声不确定度影响。仿真结果表明,存在噪声不确定度的感知环境下,EMMED算法较已有的精确最大特征值(Exact Maximum Eigenvalue,EME)和EMMER等频谱感知算法具有更好的检测性能。展开更多
文摘为了提升传统随机森林算法的分类精度,首先对传统随机森林模型中的决策树根据分类性能评价指标AUC(area under curve)值进行降序排列,从中选取出AUC值高的决策树,计算这些决策树之间的相似度,并生成相似度矩阵;然后根据相似度矩阵对这些决策树进行聚类。从每一类中选出一棵AUC最大的决策树组成新的随机森林模型,从而达到提升传统随机森林算法分类精度的目的。通过UCI(university of Californialrvine)数据集的实验表明,改进后的随机森林算法在分类精度上最大提高了2.91%。
文摘将随机矩阵的非渐近谱理论应用到协作频谱感知中,对接收信号样本协方差矩阵的最大特征值和最小特征值进行分析,该文提出一种精确的最大最小特征值差(Exact Maximum Minimum Eigenvalue Difference,EMMED)的协作感知算法。对于任意给定的协作用户个数K和采样点数N,首先推导了最大最小特征值之差的精确概率密度函数(Probability Density Function,PDF)和累积分布函数(Cumulative Distribution Function,CDF),然后利用该分布函数设计了所提算法的判决阈值。理论分析表明,EMMED算法的判决阈值较已有的渐进最大最小特征值差(Asymptotic Maximum Minimum Eigenvalue Difference,AMMED)检测更为精确,算法无需主用户信号特征并且能够对抗噪声不确定度影响。仿真结果表明,存在噪声不确定度的感知环境下,EMMED算法较已有的精确最大特征值(Exact Maximum Eigenvalue,EME)和EMMER等频谱感知算法具有更好的检测性能。