2022年汛期,国家气候中心准确预测了“全国气候年景总体偏差,区域性、阶段性旱涝灾害明显,降水空间差异显著,主要多雨区在我国北方”的总趋势,较好、较早把握了汛期主雨带位置和全国旱涝分布。对东亚夏季风和雨季季节进程“南海夏季风5...2022年汛期,国家气候中心准确预测了“全国气候年景总体偏差,区域性、阶段性旱涝灾害明显,降水空间差异显著,主要多雨区在我国北方”的总趋势,较好、较早把握了汛期主雨带位置和全国旱涝分布。对东亚夏季风和雨季季节进程“南海夏季风5月第3候爆发,长江中下游入梅偏早,梅雨量偏少,以及华北雨季开始偏早,雨量偏多”的预测与实况一致。对夏季台风生成个数较常年偏少,盛夏出现北上台风可能性大的预测与实况基本吻合。准确预测了全国平均气温趋势和高温异常特征。对“夏季我国中东部大部气温偏高,华东、华中、新疆等地高温日数较常年同期偏多,可能出现阶段性高温热浪”的预测与实况一致。主要不足之处是对长江中下游和川渝地区高温干旱的范围和极端程度估计不足。2022年汛期预测重点考虑连续La Ni a事件和印度洋偶极子负位相对东亚夏季风环流的影响,夏季西太平洋副热带高压强度偏强,脊线位置偏北,东亚夏季风偏强,初夏东北冷涡活跃,导致汛期主雨带位于东北、华北和西北地区东部等地。展开更多
Based on the analysis of the Asian lower-level jet stream, this paper indicates that having shifted to the Bay of Bengal, this large-scale lower-level jet(LLJ) develops into two branches: the northern branch (NB) whi... Based on the analysis of the Asian lower-level jet stream, this paper indicates that having shifted to the Bay of Bengal, this large-scale lower-level jet(LLJ) develops into two branches: the northern branch (NB) which is a strong southwest flow moving into the inland of China along the southeast side of the Qinghai-Xizang Plateau and then moving eastward to Japan along the north side of the subtropical high, and the southern branch (SB) which continues to be a west flow and travels into the West Pacific across the Indo-China Peninsula along the south side of the monsoon trough. Above the two branches are two synoptic-scale transient tubular monsoon circulation systems, the northern branch being a subtropical monsoon stream tube (SMST) and the southern branch a tropical monsoon stream tube (TMST). Their ascending branches, corresponding to a subtropical monsoon rain belt and a tropical monsoon rain belt respectively, bear considerable influence on the weather over China.展开更多
Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze ...Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze River, the northern and southern parts of Jiangnan ( to the south of the lower Yangtze River valley), and South China. The file of 8-type rain belts was compiled from 1470 to 2005, and in order to extend the file of rain belts, it was further merged into a file of 4-type rain belts and also completed during the last millennium from 1000 to 1999. At last, the two files show that summer rain belts frequently occur in the Yangtze River valley in warm climate periods, but in the Yellow River or the Huaihe River valley in cold periods.展开更多
The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern ...The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.展开更多
Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there e...Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there exists a key region with a “Large Triangle” shape of transporting moisture for the Tibetan Plateau to Meiyu Belt and its“source/sink” structure; discloses that the interannual variation of the whole budget of inflow and outflow of moisture through the boundaries of a “Large Triangle” key region has the in-phase characteristic. Then a moisture transport structure over the skirt of the plateau and a conceptual model on the “transfer post” of moisture transport in the area of the South China Sea-Tibetan Plateau-Yangtze River valley in summer are put forward in this paper: the anti-phase feature of whole layer moisture transport flow patterns of Yangtze River valley during drought/flooding years is exhibited using the computational scheme of whole layer moisture transport correlation vector fields; a comprehensive dynamic model and its physical diagram of the teleconnection source/sink structure of the moisture transport of the Meiyu rain belt have been made. It shows that the moisture transfer effect over the skirt of the plateau from the ocean (Indian Ocean, South China Sea and west North Pacific) led to a moisture confluence belt in the Yangtze River valley and the teleconnection moisture transport source/sink structure over the “Large Triangle” shape area in flooding years.展开更多
文摘2022年汛期,国家气候中心准确预测了“全国气候年景总体偏差,区域性、阶段性旱涝灾害明显,降水空间差异显著,主要多雨区在我国北方”的总趋势,较好、较早把握了汛期主雨带位置和全国旱涝分布。对东亚夏季风和雨季季节进程“南海夏季风5月第3候爆发,长江中下游入梅偏早,梅雨量偏少,以及华北雨季开始偏早,雨量偏多”的预测与实况一致。对夏季台风生成个数较常年偏少,盛夏出现北上台风可能性大的预测与实况基本吻合。准确预测了全国平均气温趋势和高温异常特征。对“夏季我国中东部大部气温偏高,华东、华中、新疆等地高温日数较常年同期偏多,可能出现阶段性高温热浪”的预测与实况一致。主要不足之处是对长江中下游和川渝地区高温干旱的范围和极端程度估计不足。2022年汛期预测重点考虑连续La Ni a事件和印度洋偶极子负位相对东亚夏季风环流的影响,夏季西太平洋副热带高压强度偏强,脊线位置偏北,东亚夏季风偏强,初夏东北冷涡活跃,导致汛期主雨带位于东北、华北和西北地区东部等地。
文摘 Based on the analysis of the Asian lower-level jet stream, this paper indicates that having shifted to the Bay of Bengal, this large-scale lower-level jet(LLJ) develops into two branches: the northern branch (NB) which is a strong southwest flow moving into the inland of China along the southeast side of the Qinghai-Xizang Plateau and then moving eastward to Japan along the north side of the subtropical high, and the southern branch (SB) which continues to be a west flow and travels into the West Pacific across the Indo-China Peninsula along the south side of the monsoon trough. Above the two branches are two synoptic-scale transient tubular monsoon circulation systems, the northern branch being a subtropical monsoon stream tube (SMST) and the southern branch a tropical monsoon stream tube (TMST). Their ascending branches, corresponding to a subtropical monsoon rain belt and a tropical monsoon rain belt respectively, bear considerable influence on the weather over China.
基金This work was supported by National Natural Science Foundation of China under Grant No. 40331010.
文摘Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze River, the northern and southern parts of Jiangnan ( to the south of the lower Yangtze River valley), and South China. The file of 8-type rain belts was compiled from 1470 to 2005, and in order to extend the file of rain belts, it was further merged into a file of 4-type rain belts and also completed during the last millennium from 1000 to 1999. At last, the two files show that summer rain belts frequently occur in the Yangtze River valley in warm climate periods, but in the Yellow River or the Huaihe River valley in cold periods.
文摘The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.
文摘Based on the analyses of the moisture transport structure in the whole layer of the troposphere along the Yangtze River valley during draught/flood years using the NCEP reanalysis data, this paper reveals that there exists a key region with a “Large Triangle” shape of transporting moisture for the Tibetan Plateau to Meiyu Belt and its“source/sink” structure; discloses that the interannual variation of the whole budget of inflow and outflow of moisture through the boundaries of a “Large Triangle” key region has the in-phase characteristic. Then a moisture transport structure over the skirt of the plateau and a conceptual model on the “transfer post” of moisture transport in the area of the South China Sea-Tibetan Plateau-Yangtze River valley in summer are put forward in this paper: the anti-phase feature of whole layer moisture transport flow patterns of Yangtze River valley during drought/flooding years is exhibited using the computational scheme of whole layer moisture transport correlation vector fields; a comprehensive dynamic model and its physical diagram of the teleconnection source/sink structure of the moisture transport of the Meiyu rain belt have been made. It shows that the moisture transfer effect over the skirt of the plateau from the ocean (Indian Ocean, South China Sea and west North Pacific) led to a moisture confluence belt in the Yangtze River valley and the teleconnection moisture transport source/sink structure over the “Large Triangle” shape area in flooding years.