期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法 被引量:47
1
作者 韩鹏 李银红 +3 位作者 何璇 付元欢 游昊 李本瑜 《电力系统自动化》 EI CSCD 北大核心 2016年第23期101-108,共8页
光伏阵列在局部阴影时的P-U曲线呈现多峰特性,需要设计光伏多峰最大功率点跟踪方法,以实现光伏发电最大功率输出,提高光伏发电效率。相比粒子群优化算法,量子粒子群优化算法具有收敛速度更快和全局收敛性等优势。提出了一种基于量子粒... 光伏阵列在局部阴影时的P-U曲线呈现多峰特性,需要设计光伏多峰最大功率点跟踪方法,以实现光伏发电最大功率输出,提高光伏发电效率。相比粒子群优化算法,量子粒子群优化算法具有收敛速度更快和全局收敛性等优势。提出了一种基于量子粒子群优化算法的光伏多峰最大功率点跟踪改进方法。该方法采用量子粒子群优化算法实现最大功率点的全局搜索;根据光伏阵列在局部阴影时P-U曲线上功率极值点的分布特点初始化种群中的粒子总数及其电压;并根据量子粒子群优化算法收敛时粒子自身最优位置的特点,提出了更适合光伏多峰最大功率点跟踪的收敛判据。仿真测试表明,提出的改进方法能够快速有效地实现光伏多峰最大功率点跟踪,收敛速度更快,避免了不收敛的问题,且具有应对光照情况变化的能力,提高了局部阴影时光伏发电的效率。 展开更多
关键词 光伏发电 最大功率点跟踪 粒子群优化算法 量子粒子群优化算法
下载PDF
基于传感器数据融合的倾斜角度测量方法研究 被引量:29
2
作者 史露强 何怡刚 +1 位作者 罗旗舞 何威 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第7期1683-1689,共7页
倾斜角度的测量精度直接决定了状态控制系统的工作效果。在单一传感器测量倾斜角度的研究基础上,探讨了传感器数据融合技术用于倾斜角度测量的方法。首先分析基于加速度计和陀螺仪测量倾斜角度的原理,并研究加速度计和陀螺仪测量结果的... 倾斜角度的测量精度直接决定了状态控制系统的工作效果。在单一传感器测量倾斜角度的研究基础上,探讨了传感器数据融合技术用于倾斜角度测量的方法。首先分析基于加速度计和陀螺仪测量倾斜角度的原理,并研究加速度计和陀螺仪测量结果的频率特性;然后根据加速度计和陀螺仪测量结果的频率特性选定互补滤波器作为数据融合的方法;最后选定量子粒子优化群(QPSO)算法作为互补滤波器的参数寻优方法,并对比量子粒子优化群算法和粒子群优化算法的参数寻优效果。实验结果表明,互补滤波器可以在广泛频域范围内准确测量倾斜角度值,并且量子粒子群优化算法相对于粒子群优化算法具有更好的参数寻优效果。 展开更多
关键词 倾斜角度 数据融合 互补滤波器 量子粒子群优化算法
下载PDF
基于QPSO算法的RBF神经网络参数优化仿真研究 被引量:24
3
作者 陈伟 冯斌 孙俊 《计算机应用》 CSCD 北大核心 2006年第8期1928-1931,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种以量子粒子群优化(QPSO)算法为基础的RBF神经网络训练算法,将RBF神经网络的参数组成一个多维向量,作为算法中的粒子进行进化,由此在可行解空间范围内搜索最优解。实例仿真表明,该学习算法相比于传统的学习算法计算简单,收敛速度快,并由于其算法模型的自身特性比基于PSO的学习算法具有更好的全局收敛性能。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 径向基函数神经网络
下载PDF
运用QPSO算法进行系统辨识的研究 被引量:15
4
作者 沈佳宁 孙俊 须文波 《计算机工程与应用》 CSCD 北大核心 2009年第9期67-70,共4页
引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨... 引入了一种广泛而实用的方法——基于量子行为的粒子群算法的理论应用于系统辨识领域,QPSO算法不仅参数个数少,随机性强,并且能覆盖所有解空间,保证算法的全局收敛性。仿真实验结果表明,QPSO算法具有比GA算法及PSO算法更强的线性系统辨识能力和非线性系统辨识能力。 展开更多
关键词 系统辨识 量子粒子群优化算法 线性系统 非线性系统 HAMMERSTEIN模型 WIENER模型
下载PDF
基于边界变异的量子粒子群优化算法 被引量:12
5
作者 林星 冯斌 孙俊 《计算机工程》 CAS CSCD 北大核心 2008年第12期187-188,191,共3页
将边界变异操作引入到量子粒子群优化算法中,提出基于边界变异的量子粒子群优化算法QPSOB。该算法将越界粒子随机分布在边界附近的可行域内,以增加种群的多样性、提高算法的全局搜索能力。仿真实验证明其全局收敛性能优于量子粒子群优... 将边界变异操作引入到量子粒子群优化算法中,提出基于边界变异的量子粒子群优化算法QPSOB。该算法将越界粒子随机分布在边界附近的可行域内,以增加种群的多样性、提高算法的全局搜索能力。仿真实验证明其全局收敛性能优于量子粒子群优化算法。 展开更多
关键词 边界变异 多样性 量子粒子群优化算法
下载PDF
含维变异算子的量子粒子群算法 被引量:10
6
作者 王璋 冯斌 孙俊 《计算机工程与设计》 CSCD 北大核心 2008年第6期1478-1481,共4页
针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种新的量子粒子群优化算法——含维变异算子的量子粒子群算法(QPSODMO)。计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,让所有粒子在该维上的位置重... 针对粒子群优化(PSO)算法搜索空间有限,容易陷入局部最优点的缺陷,提出一种新的量子粒子群优化算法——含维变异算子的量子粒子群算法(QPSODMO)。计算每一维的收敛度,以一定的概率对收敛度最小的维进行变异,让所有粒子在该维上的位置重新均匀分布在可行区域上。对测试函数所做的对比实验表明,所提出的QPSODMO增强了全局搜索能力,克服了PSO算法易于收敛到局部最优的缺点,也优于原始的量子粒子群算法。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 维变异算子 全局最优 均匀分布
下载PDF
侧扫声呐图像分割的中性集合与量子粒子群算法 被引量:13
7
作者 赵建虎 王晓 +2 位作者 张红梅 胡俊 简晓敏 《测绘学报》 EI CSCD 北大核心 2016年第8期935-942,951,共9页
针对现有的侧扫声呐图像分割方法存在分割准确率不高和效率偏低的问题,提出了一种基于中性集合和量子粒子群算法的侧扫声呐图像阈值分割方法。通过基于中性集合计算图像灰度共生矩阵,实现了侧扫声呐图像精细纹理的表达,提高了分割精度;... 针对现有的侧扫声呐图像分割方法存在分割准确率不高和效率偏低的问题,提出了一种基于中性集合和量子粒子群算法的侧扫声呐图像阈值分割方法。通过基于中性集合计算图像灰度共生矩阵,实现了侧扫声呐图像精细纹理的表达,提高了分割精度;基于二维最大熵理论,采用量子粒子群算法计算二维最优分割阈值向量,实现了分割阈值向量的快速准确获取,提高了分割效率和精度。最终实现了高噪声侧扫声呐图像目标的准确、高效分割。通过对含有不同目标的侧扫声呐图像的分割试验,验证了该算法的有效性。 展开更多
关键词 侧扫声呐图像 中性集合 量子粒子群算法 图像分割
下载PDF
计及风电不确定性的配电网无功模糊优化 被引量:12
8
作者 王进 刘娇 +3 位作者 陈加飞 许一帆 唐浩 杨芳华 《电力系统及其自动化学报》 CSCD 北大核心 2015年第6期8-13,共6页
针对风电机组并网给配网无功优化带来的不确定性问题,提出了基于风速预测的场景分析法,将不确定性模型转换成多个典型的确定性场景问题,建立了全场景下兼顾有功网损和静态电压稳定裕度的多目标无功优化模型。采用模糊集理论将确定性问... 针对风电机组并网给配网无功优化带来的不确定性问题,提出了基于风速预测的场景分析法,将不确定性模型转换成多个典型的确定性场景问题,建立了全场景下兼顾有功网损和静态电压稳定裕度的多目标无功优化模型。采用模糊集理论将确定性问题模糊化,按照最大满意度准则将多目标模型转换成单目标模型,并采用量子行为粒子群优化算法对模型进行求解。以IEEE69节点配电系统为例进行仿真分析,结果验证了该模型的有效性和可行性。 展开更多
关键词 无功模糊优化 场景分析法 电压稳定 最大满意度准则 量子行为粒子群算法
下载PDF
基于QPSO算法的作业车间调度问题的研究 被引量:6
9
作者 冯斌 石锦风 孙俊 《计算机工程与设计》 CSCD 北大核心 2007年第23期5690-5693,5786,共5页
针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量... 针对现行的遗传算法存在进化速度过慢和过早收敛的局限,以及粒子群优化算法搜索空间有限、容易陷入局部最优点的缺陷,提出将一种基于量子行为的粒子群优化算法应用于作业车间调度问题。将该问题中的每个调度组成一个多维向量,以此向量作为量子粒子群优化算法中的粒子进行进化,由此在解空间内搜索最优解。实例仿真结果表明,该算法收敛速度快、全局收敛性能好,可以得到比遗传算法、粒子群优化算法更佳的调度效果,证明了算法的有效性。 展开更多
关键词 遗传算法 群体智能算法 粒子群优化算法 量子粒子群优化算法 作业车间调度问题
下载PDF
基于量子粒子群优化算法的摄像机标定优化方法 被引量:9
10
作者 王道累 胡松 《激光与光电子学进展》 CSCD 北大核心 2018年第12期380-385,共6页
提出一种基于量子粒子群算法的摄像机标定优化方法。通过MATLAB软件的标定程序快速获得摄像机的内外参数;利用量子粒子群优化算法,建立了目标函数,进一步优化摄像机参数。实验结果表明,所提优化算法收敛快,精度高,能在一定程度上提高摄... 提出一种基于量子粒子群算法的摄像机标定优化方法。通过MATLAB软件的标定程序快速获得摄像机的内外参数;利用量子粒子群优化算法,建立了目标函数,进一步优化摄像机参数。实验结果表明,所提优化算法收敛快,精度高,能在一定程度上提高摄像机的标定精度。 展开更多
关键词 机器视觉 摄像机标定 量子粒子群优化(qpso)算法 内外参数
原文传递
多样性引导的改进量子粒子群优化算法及其在干式空心电抗器优化设计中的应用 被引量:9
11
作者 张成芬 赵彦珍 +1 位作者 邹建龙 马西奎 《中国电机工程学报》 EI CSCD 北大核心 2012年第18期108-115,184,共8页
针对量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法在求解复杂问题时的早熟收敛现象,提出了多样性引导的改进量子粒子群优化(diversity-guided modified QPSO,DGMQPSO)算法。该算法对基于混合概率分布的QPSO... 针对量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法在求解复杂问题时的早熟收敛现象,提出了多样性引导的改进量子粒子群优化(diversity-guided modified QPSO,DGMQPSO)算法。该算法对基于混合概率分布的QPSO算法进行了扩展,利用群体多样性信息来引导粒子的搜索,即当群体的多样性小于下限值时,对全局最优粒子的位置进行混沌变异,从而提高群体的多样性,增强算法跳出局部最优解的能力;另外,还分析了采用不同混沌随机序列变异对优化设计结果的影响。对50 kvar干式空心电抗器的优化设计表明,DGMQPSO算法具有较强的全局搜索能力、较好的稳定性和良好的优化效果。 展开更多
关键词 干式空心电抗器 优化设计 量子粒子群优化算法 多样性 混沌变异
下载PDF
多尺度量子谐振子算法性能分析 被引量:8
12
作者 袁亚男 王鹏 刘峰 《计算机应用》 CSCD 北大核心 2015年第6期1600-1604,共5页
多尺度量子谐振子算法(MQHOA)具有良好的全局收敛性以及自适应性。为分析研究MQHOA求解精度与速度具体性能,通过求解整数非线性规划问题,将MQHOA和采用量子行为模型且已被广泛使用的量子粒子群优化(QPSO)算法以及改进的随机平均最好位... 多尺度量子谐振子算法(MQHOA)具有良好的全局收敛性以及自适应性。为分析研究MQHOA求解精度与速度具体性能,通过求解整数非线性规划问题,将MQHOA和采用量子行为模型且已被广泛使用的量子粒子群优化(QPSO)算法以及改进的随机平均最好位置量子粒子群(QPSO-RM)算法进行理论模型和实验对比,仿真实验中,MQHOA对7组无约束整数规划问题的求解均取得100%成功率且求解速度整体上略快于QPSO和QPSO-RM;对2组有约束整数规划问题的求解速度比QPSO、QPSO-RM稍慢,但MQHOA的求解成功率均为100%,高于后两者;通过和QPSO、QPSO-RM的收敛过程进行对比,MQHOA更快更早于对比算法收敛到全局最优解。实验结果表明:MQHOA能有效地适应整数规划求解问题,能够避免陷入局部最优解的情况从而获得全局最优解,并在求解精度和收敛速度上均优于对比算法。 展开更多
关键词 多尺度量子谐振子算法 全局收敛 量子行为模型 量子粒子群优化算法 整数非线性规划
下载PDF
基于量子行为粒子群优化算法的定位技术研究 被引量:8
13
作者 赵吉 纪志成 《传感器与微系统》 CSCD 北大核心 2012年第5期58-61,共4页
针对无线传感器网络(WSNs)节点定位问题,阐述了WSNs的分布迭代式定位方法研究。这种方法将每次迭代后定位的节点作为其余未知节点的参考节点.同时将基于测距定位问题看成一个多维优化问题,并提出利用具有快速收敛能力的量子行为粒子群优... 针对无线传感器网络(WSNs)节点定位问题,阐述了WSNs的分布迭代式定位方法研究。这种方法将每次迭代后定位的节点作为其余未知节点的参考节点.同时将基于测距定位问题看成一个多维优化问题,并提出利用具有快速收敛能力的量子行为粒子群优化(QPSO)算法进行求解。最后将仿真实验结果与粒子群优化(PSO)算法进行比较,表明QPSO算法在优化性能上优于PSO算法,有效提高了节点定位精度,证明该方法的有效性。 展开更多
关键词 量子行为粒子群优化算法 粒子群优化算法 定位 无线传感器网络 分布迭代式
下载PDF
基于QPSO的单任务Agent联盟形成 被引量:7
14
作者 许波 余建平 《计算机工程》 CAS CSCD 北大核心 2010年第19期168-170,共3页
智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进... 智能群体搜索算法在求解单任务Agent联盟时稳定性较差、收敛速度慢、全局寻优能力不强,因此采用优化的量子粒子群优化算法解决上述问题。利用群体历史优质解,在最优粒子变异的基础上,采用多种群并行搜索,防止陷入局部极值,并对粒子群进行筛选以加快粒子群的收敛速度。对比实验结果表明,该算法可以快速、高效地找出合适的Agent联盟,在运行时间和解的质量方面优于同类算法。 展开更多
关键词 AGENT联盟 量子粒子群优化算法 组合优化 多AGENT系统
下载PDF
融合社会学习和莱维飞行的改进QPSO算法 被引量:7
15
作者 袁小平 金鹏 周国鹏 《微电子学与计算机》 北大核心 2019年第4期1-5,11,共6页
量子行为粒子群(QPSO)算法势阱中心被限制在局部最优位置和全局最优位置构成的超矩形中,粒子间信息共享机制单一,算法存在易早熟收敛、优化效率低等问题.为解决该问题,提出一种改进QPSO算法,即融合社会学习和莱维飞行的QPSO(LSL-QPSO)算... 量子行为粒子群(QPSO)算法势阱中心被限制在局部最优位置和全局最优位置构成的超矩形中,粒子间信息共享机制单一,算法存在易早熟收敛、优化效率低等问题.为解决该问题,提出一种改进QPSO算法,即融合社会学习和莱维飞行的QPSO(LSL-QPSO)算法.首先,利用社会学习策略更新非最优粒子,增强种群多样性,提高算法全局搜索能力;然后,引入莱维飞行策略,克服社会学习机制中最优粒子无更新的缺点,进一步提高算法收敛精度和收敛速度.最后,通过4个典型Benchmark函数进行测试,结果表明LSL-QPSO算法的收敛精度、收敛速度和普适性领先于QPSO和其他同类QPSO改进算法. 展开更多
关键词 量子行为粒子群算法 势阱中心 社会学习 莱维飞行
下载PDF
复杂遮蔽条件下光伏多峰出力特征及GMPPT控制 被引量:6
16
作者 陈明轩 武建文 +1 位作者 马速良 黄炼 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第6期1141-1148,共8页
针对光伏发电系统中最大功率点跟踪(MPPT)算法在遮蔽情况下失效问题,提出了一种基于δ势阱的量子粒子群全局MPPT(GMPPT)算法。结合光照强度变化时的光伏多峰值出力特征,从光伏最大功率点变迁角度出发,分析常规MPPT算法存在搜索盲区的原... 针对光伏发电系统中最大功率点跟踪(MPPT)算法在遮蔽情况下失效问题,提出了一种基于δ势阱的量子粒子群全局MPPT(GMPPT)算法。结合光照强度变化时的光伏多峰值出力特征,从光伏最大功率点变迁角度出发,分析常规MPPT算法存在搜索盲区的原因,说明GMPPT寻优必要性。提出一种提高粒子多样性、搜索速度及收敛精度的量子行为粒子群优化(QPSO)算法。在MATLAB/SIMSCAPE平台下,结合算例分析,对比标准粒子群优化(PSO)算法,验证所提优化算法在有效GMPPT的情况下,具有参数少、搜索快的特点,同时全局搜索能力强,防早熟效果明显,适用于GMPPT的实现。 展开更多
关键词 光伏发电 光伏阵列 局部阴影 全局最大功率点跟踪(GMPPT) 量子行为粒子群优化(qpso)算法
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:2
17
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
求解job-shop调度问题的量子粒子群优化算法 被引量:4
18
作者 石锦风 冯斌 孙俊 《计算机应用研究》 CSCD 北大核心 2008年第3期684-686,691,共4页
针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量... 针对粒子群优化算法搜索空间有限、容易出现早熟现象的缺陷,提出将量子粒子群优化算法用于求解作业车间调度问题。求解时,将每个调度按照一定的规则编码为一个矩阵,并以此矩阵作为算法中的粒子;然后根据调度目标确定目标函数,并按照量子粒子群优化算法的进化规则在调度空间内搜索最优解。仿真实例结果证明,该算法具有良好的全局收敛性能和快捷的收敛速度,调度效果优于遗传算法和粒子群优化算法。 展开更多
关键词 粒子群优化算法 量子粒子群优化算法 作业车间调度
下载PDF
量子粒子群优化的人工蜂群算法 被引量:5
19
作者 杜康宇 毛力 +2 位作者 毛羽 杨弘 肖炜 《传感器与微系统》 CSCD 2018年第3期130-132,137,共4页
针对传统的人工蜂群算法在求解函数优化问题中具有收敛速度慢、局部搜索能力低的缺点,将量子粒子群优化算法中粒子位移的更新方法引入到跟随蜂的局部搜索策略中,使人工蜂群具有更高的局部搜索能力。6个标准测试函数的仿真实验结果表明:... 针对传统的人工蜂群算法在求解函数优化问题中具有收敛速度慢、局部搜索能力低的缺点,将量子粒子群优化算法中粒子位移的更新方法引入到跟随蜂的局部搜索策略中,使人工蜂群具有更高的局部搜索能力。6个标准测试函数的仿真实验结果表明:与传统的人工蜂群算法相比,改进后的人工蜂群算法在收敛速度和寻优精度上大幅提高。 展开更多
关键词 人工蜂群算法 量子粒子群优化算法 当前最优解 局部搜索
下载PDF
基于二进制具有量子行为的粒子群算法的多边形近似 被引量:3
20
作者 周頔 孙俊 须文波 《计算机应用》 CSCD 北大核心 2007年第8期2030-2032,共3页
提出了适合二进制搜索空间的具有量子行为的粒子群优化算法(BQPSO)。在二进制环境中重新定义粒子的位置向量及距离向量,调整了QPSO算法的进化公式。用二进制具有量子行为的粒子群算法求解平面数字曲线的多边形近似,解决了传统BPSO算法... 提出了适合二进制搜索空间的具有量子行为的粒子群优化算法(BQPSO)。在二进制环境中重新定义粒子的位置向量及距离向量,调整了QPSO算法的进化公式。用二进制具有量子行为的粒子群算法求解平面数字曲线的多边形近似,解决了传统BPSO算法中粒子搜索范围受限的问题。用2条通用benchmark曲线进行测试,结果表明,该算法较BPSO加快了收敛速度,在相同的容忍误差和迭代次数下找到了更少顶点的多边形。 展开更多
关键词 具有量子行为的粒子群优化算法 二进制编码 多边形近似 形状描述
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部